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a b s t r a c t 

Fresh water resources on the earth are less than 0.2%; 

meanwhile, around 80% of the freshwater is consumed daily 

in agriculture, industries, and household activities [1–2] . 

There is an essential need to develop efficient adsorbents 

for wastewater treatment [1–6] , in this regards, hereafter 

we present the rationale synthesis and characterization of 

hybrid natural bentonite clay modified with Calix [4] arene 

(denoted as B-S-Calix) as efficient adsorbents for toxic metals 

from wastewater. This is driven by the facile photo-radical 

thiol-yne addition among the thiolated clay and an alkyny- 

lated calix[4]arene. The morphology, surface modifications, 

and Thermal degradation of B, B-S, and B-S-Calix were inves- 

tigated using TEM, FTIR, and TGA techniques. The adsorption 

performance of B, BS and B-S-Calix towards toxic metals 

including cadmium (II) ion [Cd (II)], zinc (II) ion [Zn(II)], 

lead(II) ion [Pb(II)], strontium(II) ion [Sr (II)], cobalt(II) ion 

[Co (II)], copper(II) ion [Cu(II)], and mercury (II) ion [Hg(II)] 

from wastewater were benchmarked 25 °C. These data are 

related to the article entitled “hybrid Clay/Calix[4]arene 

Calix[4]arene-clicked clay through thiol-yne addition 
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for the molecular recognition and removal of Cd(II) from 

wastewater’’ [7] . 

© 2021 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

Specifications Table 

Subject Chemistry 

Specific subject area General chemistry 

Type of data Images 

Charts 

How data were acquired The thermal degradation was acquired using a thermogravimetric 

analyzer ((TGA, Perkin Elmer Pyris 1 TGA). The concentration of the 

removed metals was identified using Inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). The transmission electron microscopy 

(TEM) images were taken by (TEM Jeol 100 CX-II, Japan). The 

Fourier-transform infrared (FTIR) spectra were recorded on (Nicolet 

Magna 860 FTIR spectroscopy (Thermo-Electron)). All the charts were 

drawn using Origin 2019. 

Data format TGA, TEM images, and charts for toxic metal removal are available. 

Parameters for data collection The TGA spectra were recorded under heating from 25 °C to 800 °C at a 

rate of 10 °C min −1 under an oxygen atmosphere. The TEM images were 

acquired after mixing with epoxy resin, then cut using a microtome. The 

FTIR spectra were measured using KBr compressed pellets with the 

samples with a weight ratio of 3/1. 

Description of data collection The fabrication process, thermal degradation, morphology, and 

adsorption performance using B, B-S, and B-S-Calix towards toxic Cd (II), 

Zn(II), Pb(II), Sr(II), Co(II), Cu(II), and Hg(II) removal, was measured at 

25 °C. 

data source location Center for advanced materials, qatar university, doha, qatar. 

Data accessibility The raw data were introduced in the form of Microsoft Excel file. 

Related research article K. Jlassi K. K. Eid, M.H. Sliem, A. M. Abdullaha, M. M. Chehimi, 

Calix[4]arene-clicked clay through thiol–yne addition for the molecular 

recognition and removal of Cd(II) from wastewater, Separation and 

Purification Technology 251 (2020) 117383. 

https://doi.org/10.1016/j.seppur.2020.117383 [7] . 

Value of the Data 

• Fabrication of modified bentonite-based adsorbents is important in wastewater treatment 

applications. 

• Calix[4]arene-modified bentonite clay was obtained by photo-radical-mediated thiol-yne 

addition. 

• The data herein are useful for scientists, environmental engineers, and industrial end-users. 

• The data can be used for developing effective and low-cost natural-based adsorbents for 

water treatment. 

1. Data Description 

This article presents the data associated with the modification of bentonite clay (B), silanized 

bentonite (B-S) with Calix[4]arene (B-S-Calix), and its utilization to remove toxic metals from 

wastewater [7] . The data are the synthesis of B-S-Calix, including the initial silanization of 

bentonite clay with mercaptosilane (B-S), then fabrication of 5,11,17,23-tetra-t-butyl-25,26-bis 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.seppur.2020.117383
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Fig. 1. The main steps for the fabrication of B-S-Calix including (I) silanization of clay (B-S), (II) formation of calix[4] 

arene with a triple bond (Calix), and finally (III) hybrid B-S-Calix, this image is readapted from the related research 

article [7] . 

Fig. 2. TGA patterns of B, B-S and B-S-calix and modified bentonite. 

(O-propargyl) calix[4]arene, followed by its combination with clay to form (B-S-Calix) ( Fig. 1 ) 

in addition to the TGA ( Fig. 2 ), TEM images ( Fig. 3 a-c of B, B-S, and B-S-Calix, respectively, and 

the basal distance for all samples ( Fig. 3 d). Also, the percentage of surface modification organic 

moieties in B-S and B-S-Calix is illustrated in Table 1 . Besides, the utilization of B-S-Calix for 

selective removal of Cd(II) from wastewater in the presence of Zn(II), Pb(II), Sr(II), Co(II), Cu(II), 

and Hg(II) is presented in Fig. 4 . Raw data are provided as supplementary files. 
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Fig. 3. (a,b, and c) high-resolution TEM images of B, B-S, and B-S-Calix, (d) Evolution of basal distance d (001), in the 

presence of the differently prepared samples. 

Table 1 

The amount of intercalated organic moieties deduced from the TGA experi- 

ments for modified clays. 

Samples Intercalated moieties (%) by weigh in the sample 

B-S 16.3 

B-S-Calix 22.3 

Fig. 4. The selective adsorption of Cd(II) on B-S-Calix in the presence of Zn(II), Pb(II), Sr (II), Co(II), Cu(II), and Hg (II) 

toxic metals. 
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2. Experimental Design, Materials and Methods 

2.1. Preparation process of B-S-Calix 

All Chemicals used here were purchased from Sigma-Aldrich (Taufkirchen, Germany). 

Fig. 1 shows the fabrication process of B-S-Calix using the photo-induced thiol-yne method. 

This process includes three main steps: First, intercalating the sodium-modified bentonite clay 

by the 3-mercaptopropyltrimethoxysilane to form silanized clay (denoted as B-S), followed by 

the preparation of calix[4] arene with triple bond via mixing a solution of 5,11,17,23-tetra- 

tbutylcalix[4]arene, propargyl bromide in dimethylformamide, and sodium hydride at 80 °C to 

produce calix[4] arene with a triple bond (denoted as Claix), and finally, the photo-induced 

thiol-yne method under UV-light (365 nm) illumination for the silanized clay (B-S) with Calix 

dissolved in acetonitrile solution (CAN) to form the B-S-Calix. 

Fig. 2 demonstrates the TGA curves of B, B-S, and B-S-Calix. The corresponding percentage of 

organic moieties (silane coupling agent and calixarene) was summarized in Table 1 . The B-S and 

B-S-Calix-modified clays have shown a noteworthy improvement in thermal stability compared 

to the unmodified B. For the purified B sample, a mass loss of 7.5% at 40–150 °C was noted; 

moreover, a 5.3% weight loss appeared at 40 0–80 0 °C, for the -OH groups desorption from the 

bentonite surface. For B-S and B-S-Calix clays, the highest weight loss was noted at 200–650 °C, 

which is related to the degradation of organic compounds (silane coupling and calixarene). This 

thermal degradation of 5.7% for B-S and 11% for B-S-Calix in the 1st step of calix bonded to clay 

via Van der Waals forces, alongside a 9.7% for B-S and 12.6% for B-S-Calix in the 2nd step of 

calix bonded to bentonite of ( Fig. 2 ) [8 , 9] . 

Compared to bentonite, the formation of B-S and B-S-Calix was confirmed by the FTIR anal- 

ysis using KBr compressed pellets, from 40 0–40 0 0 cm 

−1 as deeply described in the main article 

[7] . The surface area of the adsorbent is of great importance in the adsorption process. Thereby, 

the surface area of B-S-Calix and bentonite were calculated to form the nitrogen adsorption- 

desorption isotherm curves using the Brunauer–Emmett–Teller (BET) model [7] . The determined 

BET surface area of B-S-Calix (78.934 m 

2 /g) was higher than that of bentonite (15.75 m 

2 /g). 

Additionally, the particle size B-S-Calix was about 140 ± 10 nm and had a negative charge of 

( −36.05 mV) on the surface as determined by the DLS and zeta potential, respectively [7] . 

The shape of the as-obtained materials was analyzed by TEM ( Fig. 3 ). The TEM images of B 

( Fig. 3 a), B-S ( Fig. 3 b), and B-S-Calix ( Fig. 3 c) show the multilayered structure. However, B and B- 

S were slightly compacted and more staked than that of B-S-Calix. The layers of B-S-Calix were 

intercalated and in some regions exfoliated. Fig. 3 d shows the increase of basal distances, be- 

tween bentonite layers d(001) for each sample, upon sample modifications, the d(001) deduced 

from the TEM images, were calculated through some selected regions, in our case four regions 

were selected. For B-S and especially for B-S-Calix some regions are intercalated and some oth- 

ers are slightly exfoliated, the average basal distances between layers deduced from TEM were 

found to be equal to 1.3, 1.5 and 1.9 nm, for B, B-S, and B-S-Calix respectively, which is slightly 

higher, but in the same range and match the distances determined by TEM and XRD described 

in the main related manuscript [7] , demonstrating successful intercalation of the calixarene via 

thiol-yne click reaction. 

The selectivity of B-S-Calix toward the adsorption of Cd (II) was tested using Zn (II), Pb(II), 

Sr (II), Co(II), Cu(II), and Hg (II) toxic metals under pH of 8 at 25 oC ( Fig. 4 ). These overall toxic 

metals are highly dangerous to human and animal health [1 , 5 , 10–15] . A dispersion of B-S-Calix 

in wastewater solution contains 50 ppm of each heavy metal under stirring for 1 h followed by 

the phase separation and then analyzing the supernatant using ICP. 

The adsorption efficiency (E%) was determined using the following equation 

E = 

[(
C f − C o / C o 

)
× 100 

]
(1) 

Where C f is the final concertation of metals in the supernatant and C o is the initials metal 

concentration. The metals adsorption ability on B-S-Calix was found to be around 92, 73, 72, 66, 

57, 35, and 21% for Cd(II), Hg(II), Zn(II), Pb(II), Cu(II), Co(II), and Sr (II), respectively ( Fig. 4 ). 
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3. Feasibility for the Large-Scale Water Treatment 

The cost of adsorbents is a highly important factor, determine the feasibility for large-scale 

applications. Based on the cost of the raw materials used in the preparation of B-S-Calix, its 

production cost was estimated to be around 0.1 ± 0.03 $ USD per one gram, which is more cost- 

effective than most of the commercial adsorbents such as carbon and silica. Meanwhile, our 

developed C-S-Calix’s water treatment efficiency was significantly higher than most previous 

adsorbents under similar conditions (Table 4 in the related manuscript) [7] . 

Considering the initial concentration of 50 ppm in the contaminated water, B-S-Calix removed 

92.8% of Cd(II), so the remaining Cd(II) is 3.6 ppm, which is higher than the maximum contam- 

inant level of Cd in drinking water (0.005 ppm) according to the World Health Organization, 

so the produced water is not feasible for drinking but can be used for agriculture usage. On 

the other hand, although the Cd(II) removal percentage over B-S-Claix was only 92.8% at pH of 

8, at lower concertation of Cd(II) (25 ppm), the removal effeciency was 100% under the same 

conditions. 
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