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ARTICLE INFO ABSTRACT

Keywords: Extensive research has been conducted on the spectral properties of chromeno[4,3-b]pyridine derivatives, owing
Chromeno[4,3-b]pyridine to their potential applications in sensing, optoelectronic devices, and drug discovery. This study presents a
Coumarins

comprehensive investigation into the fluorosolvatochromism of selected chromeno[4,3-b]pyridine derivatives,
. with a particular emphasis on the impact of methoxy substitution. Three derivatives were synthesized and
Fluorosolvatochromism N . L. )
Solvation models subjected to spectral analysis: chromeno[4,3-b]pyridine-3-carboxylate (I) as the parent compound, and its 7-
DFT and TD-DET methoxy (II) and 8-methoxy (III) substituted derivatives. The UV-Vis absorption spectra of all derivatives
exhibited a broad band with a maximum absorption wavelength that remained unaffected by the surrounding
medium. However, distinct fluorescence properties were observed among them. Specifically, derivative II dis-
played notable fluorescence, while derivatives I and III exhibited no fluorescence properties. Furthermore,
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derivative II exhibited a fluorescence spectrum that is significantly influenced by the polarity of the medium. To
investigate the fluorosolvatochromic behavior in depth, we conducted a comprehensive analysis using various
neat solvents with different polarities and hydrogen bonding capabilities. The results obtained revealed a sig-
nificant positive fluorosolvatochromism, with a bathochromic shift in the fluorescence spectrum as the solvent
polarity increased. To understand how specific and non-specific interactions between the solute and the solvent
affected the fluorosolvatochromism of II, we employed the four empirical scales model of Catalan. The obtained
results demonstrated that intramolecular charge transfer played a crucial role in the fluorescence behavior of II.
To provide a molecular-level explanation for the experimental spectral properties, we utilized the DFT and TD-
DFT/B3LYP/6-31 + G(d) computational methods with the IEFPCM implicit solvation approach. The spectral
differences between II and III were rationalized in terms of the frontier molecular orbitals (FMOs: the HOMO and
LUMO), where distinct natures were observed among the examined derivatives. This study offers valuable in-
sights into the impact of methoxy substitution on the physical and chemical properties of chromeno[4,3-b]

pyridine derivatives, specifically concerning their spectral properties as elucidated by their fluo-

rosolvatochromic behavior.

1. Introduction

Coumarin serves as a ubiquitous structural framework, forming the
core of numerous naturally occurring and synthetic molecules employed
in a wide range of applications [1-3]. The diverse applications of
coumarin-containing compounds underscore the ongoing extensive
research aimed at discovering new synthetic methods to access cou-
marins with a variety of substitution patterns [4-10], the study of
coumarin photochemical and photophysical properties, and exploring
their utilization in various applications [11-15]. Coumarin-based mol-
ecules exhibit a wide spectrum of pharmaceutical activities, including
antibacterial [16], antifungal [17], antiviral [18], anti-inflammatory
[19], antitumor [20], anticancer [21], antidiabetic [22], antihyperten-
sive [23], and Antineurodegenerative activities [24]. With its pharma-
ceutical activities, coumarin is found in various marketed drugs,
including the anticoagulant agent warfarin [25]. Moreover, coumarin
framework is embedded in the structures of many insecticides [26], and
food additives [27]. Furthermore, due to their high fluorescent quantum
yield, long decay times, large Stokes shifts, and response to their mi-
croenvironments [28-30], coumarins generally exhibit a variety of
interesting photophysical properties that enable them to be utilized in
the design and synthesis of fluorescence sensors [31], fluorescence dyes
[32,33], laser dyes [34,35], and optical devices [7,36,37].

Substituted coumarins, particularly 7- and 8-methoxy-coumarins,
have garnered significant attention from medicinal and material
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chemists. This interest stems from reports indicating that the presence of
a methoxy group on the coumarin skeleton enhances their biological
activities.[38], and affects the photophysical and photochemical prop-
erties of substituted coumarins [39,40]. For example, isofraxidin (A),
Fig. 1, has shown activity against lung cancer cells [41], naturally
occurring polyneomarline C (B) is used in Chinese herbal medicine [42],
Scoparone (C) is an immunosuppressant [43], the methoxy coumarin D
is an active antifungal agent [44] and coumarin F is an anticancer agent
[45]. Furthermore, methoxy-substituted triazolyl coumarin E as a Hg?*
selective fluorescent chemosensors [46], and compound G is a Znt?
fluorescent chemosensor [47]. In addition to the substitution on the
coumarin core, heterocycles fused to the lactone ring of the coumarins
result in a synergistic effect of both the coumarin and the heterocycle
[5,48-52]. Moreover, pyridocoumarins are a privileged class of
heterocycle-fused coumarins that are spread in natural products and in
compounds employed for versatile applications [50,51,53].
Importantly, in order to obtain a comprehensive understanding of
the behavior of these intriguing coumarins, spectral studies offer crucial
insights into their physicochemical properties [54-56]. The data ob-
tained from spectral studies are essential for comprehending and inter-
preting charge distribution, identifying nucleophilic and electrophilic
sites during potential chemical reactions, assessing solvent polarity, and
most importantly, understanding the changes in electronic distribution
and geometric structure upon excitation [57,58]. Therefore, sol-
vatochromism is a widely employed technique for investigating these
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Fig. 1. Methoxy coumarins utilized in different applications.
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aspects of molecules, both in their ground state and upon excitation
[59]. This exciting phenomenon involves analyzing the electronic

spectra of potential probes in various solvents with different polarities
and hydrogen bond donor/acceptor properties [54,57,59], where the
solvent-molecule interaction is observed mainly through a change in the
shape and intensity of the electronic spectral bands [60-62].

In this study, we investigated the impact of the surrounding medium
on the physicochemical and spectral properties of three chromeno[4,3-
blpyridine derivatives: the parent compound (I) without methoxy sub-
stitution, and derivatives (II) and (III) with 7- and 8-methoxy sub-
stitutions, respectively. The chemical structures of all derivatives are
displayed in Fig. 2. Furthermore, we rationalized the associated fluo-
rosolvatochromism by employing the linear solvation model of Catlan.
To gain insights into the structural effects of the methoxy substituent on
the fluorosolvatochromic behaviors of the examined derivatives, as well

as to provide molecular-level interpretation related to the corresponding
structural effects, we utilized DFT and TD-DFT approaches.

2. Experimental

2.1. Materials

Solvents were supplied by Sigma-Aldrich, and used without further
purification. All organic solvents were of spectroscopic grades and used

as received.

2.2. Synthesis

The substituted chromeno[4,3-b]lpyridine-3-carboxylates 3(a-c)
were synthesized according to a reported procedure [63]; more details

are provided in the supplementary materials.

2.3. Procedures and spectroscopic measurements

Stock solutions (3.0 x 1074 M) were prepared for each compound in
methanol. The working solution of approximately 3.0 x 1075 M was
prepared through the process of first removing an aliquot of the stock
solution that had been created using methanol, and then evaporation at
room temperature and ambient pressure. After that, the residue was
redissolved in the relevant volume of the solvent of interest. The UV-Vis
absorption and fluorescence spectra of the synthesized compounds were
measured in neat solvents and ultrapure deionized water using Agilent
double beam spectrophotometer in quartz cells. The fluorescence
quantum yield was calculated as described previously [56].

2.4. Computational methods

All DFT and TD-DFT calculations were performed with Gaussian 09

2
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Fig. 2. Chemical structures of chromeno[4,3-b]pyridine-3-carboxylates

rivatives investigated in the current study.
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version D.01. The hybrid B3LYP functional and the 6-31 + G(d) basis set
were utilized in order to carry out the whole molecular geometry opti-
mization [64]. The implicit solvent effect was considered employing the
integral equation formalism polarizable continuum model (IEFPCM)
[65]. The time-dependent version of DFT, namely TD-DFT, with B3LYP
functional and 6-31 + G(d) basis set were utilized to simulate the ab-
sorption and emission spectra. Using the optimized ground-state ge-
ometry as an input geometry, the simulated absorption spectra were
computed for the first eighteen excitation states. The multilinear
regression analysis, also known as MLRA, was carried out using Excel in

its default configuration.
3. Results and discussion

3.1. The absorption and emission spectra

The absorption spectra of all three derivatives of chromeno[4,3-b]
pyridine, namely I, II, and III, were initially measured in methanol.
The UV-Vis absorption spectra of all three derivatives displayed a broad
band with a maximum absorption wavelength that remained unchanged
regardless of the surrounding medium. Additionally, we attempted to
measure the fluorescence spectra of all derivatives in various media and
at different concentrations. However, II exhibited remarkable fluores-
cence properties, whereas I and III showed no fluorescence, classifying

them as non-fluorescent molecules. Therefore, the parent compound
was excluded from further analysis, and all subsequent comparative
analyses were focused on II versus III. Fig. 3 displays the normalized
absorption spectra of II and III, along with the normalized fluorescence
spectrum of II. By examining the absorption spectra shown in Fig. 3, it
can be observed that II and III have Apax values of 310 nm and 280 nm,
respectively. This shift in Apax can be attributed to the position of the
methoxy substituent, indicating distinct intramolecular structural ef-
fects. However, it is important to note that the results obtained from the
absorption spectroscopy method revealed minimal dependency on sol-
vent effects. Consequently, we conducted a comprehensive investigation
into the solvatochromism of II using steady-state fluorescence spec-
troscopy in a variety of solvents with varying polarity and hydrogen
bonding capabilities.

Fluorosolvatochromic behavior of II. The influence of solvents on the
fluorescence spectra of I was investigated using a range of neat solvents
with varying polarities and hydrogen bonding capabilities. The param-
eters of the solvents, along with the spectral properties of II, are
compiled in Table 1. The selected solvents are categorized into three

Normalized Intensity (a.u.)

400 450 500

wavelength (nm)

350

300

250

de- Fig. 3. Absorption spectra of II and III and fluorescence spectrum of II
in methanol.
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Table 1

Solvent parameters and spectral properties of II.
Solvent Af Sp SdP SA SB Aabs (nm) MEluor (nm) Av(em™) Fluor. QY
Polar protic
Water 0.320 0.681 0.997 1.062 0.025 310 444 9736 0.120
Methanol 0.31 0.608 0.904 0.605 0.545 310 422 8561 0.109
Ethanol 0.289 0.633 0.783 0.400 0.658 310 419 8392 0.108
1-Butanol 0.264 0.674 0.655 0.341 0.809 311 415 8058 0.061
2-Butanol 0.262 0.656 0.706 0.221 0.888 310 412 7986 0.034
1-Propanol 0.274 0.658 0.748 0.367 0.782 311 416 8116 0.110
Isopropanol 0.276 0.633 0.808 0.283 0.83 310 414 8103 0.141
Polar aprotic
Ethylacetate 0.200 0.656 0.603 0 0.542 311 408 7645 0.018
DCM 0.218 0.761 0.769 0.040 0.178 311 406 7524 0.035
DMF 0.276 0.759 0.977 0.031 0.613 313 420 8139 0.148
Acetonitrile 0.305 0.645 0.974 0.044 0.286 310 415 8162 0.081
DMSO 0.264 0.83 1.000 0.072 0.647 313 424 8364 0.085
Non-polar
1,4-Dioxane 0.020 0.737 0.312 0 0.444 312 405 7360 0.034
Chloroform 0.153 0.783 0.614 0.047 0.071 311 389 6447 0.052
Cyclohexane 0.005 0.683 0 0 0.073 312 374 5313 0.003
Hexane 0.001 0.616 0 0 0.056 312 376 5456 0.002

groups: polar protic, polar aprotic, and nonpolar, as indicated in Table 1.
The measured fluorescence spectra of II in these selected solvents,
normalized to unity with respect to Apmax, are depicted in Fig. 4. From
Fig. 4, it is evident that as the polarity of the solvents increased, a sig-
nificant bathochromic shift was observed, indicating a positive fluo-
rosolvatochromic behavior for II. This behavior caused a shift of up to
70 nm across the range of examined solvents, as noted in Table 1.
Furthermore, the fluorescence spectrum displayed more vibronic fine
structure in nonpolar solvents compared to their polar counterparts. The
first emission peak, appearing as a shoulder at a shorter wavelength than
the second emission peak, gradually disappeared as the solvent polarity
increased.

In principle, when molecules exhibit UV-Vis absorption unaffected
by the polarity of the surrounding medium but display solvatochromic
behavior in their fluorescence spectra (a red shift with increasing po-
larity), it typically indicates the presence of photo-induced intra-
molecular charge transfer (ICT) in the singlet excited state. This
phenomenon is commonly observed in compounds with a conjugated
n-electron system, where electron donor and acceptor groups are present
across the backbone of the molecule [66,67]. Accordingly, an ICT is

12 T T
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Fig. 4. Fluorescence spectra of compounds II in selected neat solvents ((Aex =
310 nm); inset: normalized absorption spectra.

proposed for II, as displayed in Scheme 1. Hence, it can be hypoth-
esized that the ICT yields a zwitterionic form of II with charge separation
that is more stabilized by a polar solvent.

Moreover, generally, a notable shift in the fluorescence spectrum of a
molecule can be attributed to specific and nonspecific interactions with
the solvent molecules under the influence of solvation. Thus, in order to
rationalize the effects of various solvent parameters on the fluorescence
spectra of II, we employed the four empirical scales model of Catalan. It
is noteworthy to mention that this model is more detailed compared
with the typical Kamlet-Taft analogue, where the dipolarity/polariz-
ability parameter (n*) is split into two parameters, namely solvent
polarizability (SP) and dipolarity (SdP) [68,69]. The Cataldn model
defines the solvent-dependent physicochemical property (A) compared
to counterpart value in the gas phase (A,) according to the following
equation:

A=A, +bSA + cSB + dSP + eSdP 1)

where b, ¢, d, and e are the regression coefficients of the empirical sol-
vent parameters of acidity (SA), basicity (SB), dipolarity (SdP), and
polarizability (SP), respectively. The magnitude of these regression
constants refers to the sensitivity of the physicochemical properties to a
corresponding solvent-solute interaction. The MLRA was applied to
three spectral properties of II employing the Catalan model, namely
fluorescence maximum wavelength (Apjy0), Stokes shift (Av), and Fluo-
rescence Quantum Yield (FQY). The following equations were
concluded:

Aruo = (357 £ 22) + (29 £ 32)SA + (32 £ 7)SB + (27 £ 8)SP + (11
+6)SdP R
=0.950 (2

¥
MeO o O

Scheme 1. Proposed resonance structures of II.
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Av = (5211 & 1276) + (472 & 1862)SA + (2211 = 342)SB + (1579
+ 452)SP + (704 + 375)SdP R
=0.958 3

FQY = (0.002 4 0.109) — (0.018 = 0.032)SA + (0.090 + 0.037SB
+ (0.042 4+ 0.039)SP + (0.024 +0.032)SdP R
= 0815 &)

As can be seen from Eq. (1), an equal contribution of around 30% is
found from SA, Sb, and SP. This finding is suggestive of contributions
coming from both specific and nonspecific solute-solvent interactions.
In addition, each of the solvent parameters was shown to have a sig-
nificant influence on the induction of a bathochromic shift into Agjyo.
However, a more dominant effect for SB (45%) and SP (32%), and much
lower effects for SA and SdP, are observed. Yet, positive contributions on
Av is observed for all parameters. For the FQY, the SB, SP, and SdP
exhibited positive contributions of similar levels compared to Av,
whereas negative contributions were observed for the SA, indicative of
potential quenching of the fluorescence intensity. Based on these find-
ings, it is hypothesized that dipole-dipole interactions and hydrogen
bonding (HB) can result in ionic coupling and solvation within the
molecular environment of II, thereby influencing the corresponding
fluorosolvatochromic behavior. Furthermore, per the acceptable corre-
lation coefficient (R) value obtained for the MLRA, the acquired modules
were employed to potentially predict the spectral properties of II using
the same tested solvents. Fig. 5 displays the correlation between the
measured and predicted spectral properties in all tested solvents. As can
be noted, good correlation coefficients were obtained for Agjyo (R: 0.95)
and Av (R: 0.96), whereas reasonable correlation was obtained for FQY
(R: 0.81). In addition, upon applying eq. (4), one can notice that the
examined solvent exhibit two distinctive behaviors in reference to the
experimental spectral properties compared to the predicted value,
namely positive and negative deviations. Nonetheless, the majority of
the solvents exhibited minimal deviation for Ag, and Av with R values
of 0.95 and 0.96, respectively. These findings indicate reasonable val-
idity for the employed approach. However, in order to rationalize the
solvent effect on the spectral properties of II, further analysis employing
specific computational chemistry techniques is required.

Based on the positive fluorosolvatochromic behavior observed for II,
further solvatochromic assessment was attempted employing the
Lippert-Mataga approach. In this model, the Av is correlated to the effect
of solvent polarizability (Af) according to the following equation:

2(u,, — )’

Ay —
v hea®

Af + const. 5)
where |ley and jig are the dipole moments of the molecule in its excited
and ground states, respectively; h: Planck’s constant; a: the cavity radius
in which the fluorophore resides; c: speed of light. The change in p

((Ap = pox —Hg) can be calculated from the slope (M> of the

hca3

linear plot of Av vs. Af. A value of 4.2 A was estimated for the cavity
radius employing the DFT- optimized geometry of II. The Lippert-
Mataga plots for the polar protic and polar aprotic sets of solvents
were constructed as illustrated in Fig. 6. As can be noted, positive slopes
were obtained for both categories of solvents, indicative of a positive
value for the Ap upon excitation, which in turn indicates a higher value
for pe compared to ;. Indeed, these findings are in good agreement with
the positive fluorosolvatochromic behavior of II. Consequently, we
attempted to calculate Ap upon excitation for both the locally excited
(LE) and ICT states. Our calculations revealed Ap values of 2.43 and 4.21
D for the LE and ICT states, respectively. These values indicate a partial
separation of charges that is consistent with the proposed ICT displayed
in Scheme 1.

DFT, TD-DFT, and molecular orbitals characteristics. The optimization
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of the molecules under investigation is crucial for conducting other
computational experiments, such as simulating the UV-Vis absorption
spectra in the relevant medium. Fig. 7 displays the optimized geometry
of II in both the ground and excited states, using DFT (B3LYP/6-31G+
(d), IEFPCM, methanol). One key difference between the ground and
excited state geometries can be observed for the O-C bond that links the
methoxy group with the ring (indicated by arrows in Fig. 7). The DFT
calculations revealed a bond length of 1.355 A in the ground state ge-
ometry and 1.325 A in the excited state geometry, respectively. Addi-
tionally, as illustrated in Fig. 7-B, the geometry in the excited state
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Fig. 6. Lippert-Mataga plot (Av vs. Af) of II; red: non-polar and polar-aprotic,
blue: polar-protic.

exhibited an increased bond order, indicative of potential charge
transfer. As aforementioned, the positive solvatochromic behavior in-
dicates that the dipole moment of the molecule in its ground state is less
than in its excited state. Consequently, the increase in solvent polarity
causes further stabilization of the excited state energy, which in turn

@
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reduces the energy gap between the ground and excited states, resulting
in a prolonged emission wavelength for the molecule of interest. In view
of that, the results obtained from the DFT-geometry optimization of II in
the ground and excited states revealed values of 7.29 and 5.98 Debye for
pe and pg, respectively, which, in turn, is in good agreement in principle
with the results obtained by the Catalan and Lippert-Mataga approaches
concerning the positive fluorosolvatochromic behavior of II.

As experimentally observed, it is noteworthy to mention that such
positive fluorosolvatochromic behavior for Ao may often be indicative
of an — n* electronic transition. Accordingly, TD-DFT calculations were
conducted to gain insights concerning the key molecular orbitals (MOs)
that are associated with the absorption and emission spectra and the
corresponding electronic states and transitions of II. The IEFPCM sol-
vation model was employed for accounting for the solvent effects on the
spectral properties of II. Fig. 8 displays the experimental and simulated
absorption and emission spectra of II. The vertical dotted lines corre-

spond to the major electronic transition between MOs responsible for
the absorption and emission bands. As can be noted, the simulated ab-
sorption spectra are in excellent agreement with the experimental ana-
logues for Amax; however, a difference in the shape of the spectra can be
noted regarding the shoulder that appears at ~280 nm for the experi-
mental spectrum compared to its simulated analogue. Importantly,
although the shoulder does not appear clearly in the simulated spec-
trum, the DFT calculations revealed a transition at 280 nm with an
oscillation frequency (f) of 0.016. Such a low value of f might be the
reason for not appearing as a shoulder in the spectrum, which in turn
might be attributed to the limitations of the computational methods,

Fig. 7. Molecular geometry of II ((DFT (B3LYP/6-31G+(d), IEFPCM, methanol) in the ground (A) and excited (B) states; hydrogen atoms are omitted for clarity.
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Fig. 8. Experimental and simulated TD-DFT (DFT (B3LYP/6-31G-+(d), IEFPCM, methanol)) absorption and Fluorescence spectra of II.



M. Shkoor et al.

including the solvation model PCM. It is noteworthy to mention that
PCM assumes a static and continuum representation of the solvent,
where the solvent is treated as a homogeneous medium with a fixed
dielectric constant. As such, solvent effects are treated implicitly, and
the explicit solvent molecules are not included in the calculations.
Consequently, this may not fully capture the complex and dynamic
behavior of solvent molecules, especially in cases where specific sol-
vent-solute interactions exist, such as hydrogen bonding or ion-dipole
interactions. Nevertheless, PCM remains a valuable tool in computa-
tional chemistry, particularly for studying solvation effects in molecular
systems where explicit solvent molecules are computationally unnec-
essary. One can notice that although excellent agreement between the
measured and simulated UV-Vis absorption spectra of Il was observed, a
significant difference between the experimental and theoretical maxima
positions in the fluorescence spectra is notable. In fact, theoretical
methods for calculating excited-state properties like fluorescence spec-
trum are inherently challenging. Hence, such methods might have lim-
itations in describing excited-state phenomena accurately and might not
fully capture the electronic interactions and environmental effects that
influence the fluorescence properties of the molecule; this includes
influential factors such as the solvent and conformational effects. The
solvent environment can strongly influence the fluorescence behavior. If
the theoretical calculations neglect or inadequately model the solvation
effects, the predicted fluorescence maxima may deviate from the
experimental values, which is an outcome that is not unusual upon
employing implicit solvation models such as the PCM. On the other
hand, molecules in solution can adopt different conformations due to
solvent interactions, leading to variations in their fluorescence proper-
ties. Theoretical calculations might not consider the full conformational
landscape or fail to accurately predict the dominant conformation pre-
sent in the experimental conditions.

The TD-DFT calculations revealed that the key electronic transitions
that contribute to the observed absorption band are the HOMO — LUMO
transition for A39 with an oscillation frequency (f) of 0.157, and HOMO
— LUMO and HOMO — LUMO + 1 for A3z with an f value of 0.529. For
the emission spectra, reasonable agreement exists between the simu-
lated and experimental Agjyor. Likewise, the key electronic contributions
into the emission band are the LUMO — HOMO and LUMO + 1 - HOMO
transitions at Agg3 and Asps with f of 0.435 and 0.397, respectively.
Additionally, in correspondence with the 1 — n* electronic transition
concluded experimentally as the key electronic transition that contrib-
utes to the absorption and emission bands of II, further analysis is
necessary concerning the nature of the molecular orbitals involved in
such electronic transitions. The frontier orbitals, HOMO and LUMO,
were generated as well as other molecular orbitals for II and III; see
Fig. 9. As evident from Fig. 9, the HOMO and LUMO of II are n and ©*
molecular orbitals, respectively, and they extend over the entire mole-
cule, including the methoxy substituent. Intriguingly, this finding aligns
well with the proposed ICT (intramolecular charge transfer) depicted in
Scheme 1 and also correlates with the experimental and simulated
spectral results obtained for II. However, for I, it can be noted that the
HOMO is more localized around the methoxy group and partially
extended over the phenyl moiety. This nature of the HOMO can poten-
tially account for the poor fluorescence properties observed compared
with II. Furthermore, we attempted to rationalize the effect of solvent
polarity on the fluorosolvatochromic behavior of II by calculating the
same MOs in 1,4-dioxane. Obtained results revealed similar shapes for
the HOMO and LUMO; however, a stabilization of 0.098 eV and a
destabilization of 0.048 eV in the LUMO and HOMO, respectively, were
observed in methanol compared with 1,4-dioxane, which in turn is in
good agreement with the experimental results, where a positive fluo-
rosolvatochromic behavior is exhibited by II with increasing solvent
polarity.
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Fig. 9. Selected frontier MOs of II and III and the corresponding electronic
transitions; DFT (B3LYP/6-31G+(d), IEFPCM, methanol).

4. Conclusion

In this study, we investigated the medium effects on the physico-
chemical and spectral properties of three derivatives of chromeno[4,3-
blpyridines. It was demonstrated that the position of the methoxy sub-
stituent on the chromeno moiety plays a crucial role in yielding de-
rivatives with notable fluorescence properties. Specifically, the 7-
methoxy-chromeno[4,3-b]pyridine-3-carboxylate derivative exhibited
significantly higher fluorescence compared to the parent (unsubstituted)
and 8-substituted analogues. Furthermore, the 7-substituted derivative
displayed positive fluorosolvatochromic behavior, facilitated by intra-
molecular charge transfer (ICT) involving the methoxy substituent. This
behavior was confirmed through steady-state fluorescence measure-
ments and analyzed using linear solvation models. The emission spectra
of the 7-substituted methoxy derivatives were influenced by the sol-
vent’s polarity, and the observed positive solvatochromic behavior
indicated a more polar excited state with considerable structural
changes. The experimental findings were further supported by DFT and
TD-DFT computations, which rationalized the fluorosolvatochromic
behavior in relation to electronic structures and electronic transitions.
The results clearly demonstrated that the position of the methoxy sub-
stituent significantly contributes to the ICT of the chromeno[4,3-b]
pyridine-3-carboxylate derivative and consequently to the correspond-
ingly positive fluorosolvatochromic behavior.
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