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Metabolic GWAS of elite athletes 
reveals novel genetically-influenced 
metabolites associated with 
athletic performance
Fatima Al-Khelaifi1,2, Ilhame Diboun3, Francesco Donati4, Francesco Botrè   4,  
David Abraham   2, Aroon Hingorani   5, Omar Albagha3,6, Costas Georgakopoulos1, 
Karsten Suhre   7, Noha A. Yousri8,9,11 & Mohamed A. Elrayess10,11*

Genetic research of elite athletic performance has been hindered by the complex phenotype and the 
relatively small effect size of the identified genetic variants. The aims of this study were to identify 
genetic predisposition to elite athletic performance by investigating genetically-influenced metabolites 
that discriminate elite athletes from non-elite athletes and to identify those associated with endurance 
sports. By conducting a genome wide association study with high-resolution metabolomics profiling 
in 490 elite athletes, common variant metabolic quantitative trait loci (mQTLs) were identified and 
compared with previously identified mQTLs in non-elite athletes. Among the identified mQTLs, those 
associated with endurance metabolites were determined. Two novel genetic loci in FOLH1 and VNN1 
are reported in association with N-acetyl-aspartyl-glutamate and Linoleoyl ethanolamide, respectively. 
When focusing on endurance metabolites, one novel mQTL linking androstenediol (3alpha, 17alpha) 
monosulfate and SULT2A1 was identified. Potential interactions between the novel identified mQTLs 
and exercise are highlighted. This is the first report of common variant mQTLs linked to elite athletic 
performance and endurance sports with potential applications in biomarker discovery in elite athletic 
candidates, non-conventional anti-doping analytical approaches and therapeutic strategies.

The superior physical performance of elite athletes is a multifactorial trait, with contributions from both environ-
mental (exercise and diet) and genetic factors1. There is ample evidence suggesting influence of multiple genetic 
variants with small effect size over several phenotypic traits related to physical performance2. The identification 
of these variants is crucial to understand the superior performance of elite athletes and has been a subject of study 
for many years3–5. However, research into the genetics of athletic performance has been hindered by small sample 
sizes and complexity of the phenotype6. Genome-wide association studies (GWAS) in athletes versus non-athletes 
have uncovered many new loci7,8. However, a meta-analysis of 1520 endurance athletes and 2760 controls has 
revealed no evidence of association of a common genetic variation with endurance status in world class athletes9.

The advancement in metabolomics tools including mass spectrometry (MS) technologies has offered a unique 
opportunity to complement genomics data with intermediate phenotypes. Identified metabolites exhibited direct 
functional associations with genetic variants and provided greater effect sizes10,11. In a pilot metabolomics study, 
we identified differences in metabolic profiles between moderate and high endurance elite athletes including 
metabolites involved in steroid biosynthesis, fatty acid metabolism, oxidative stress and energy-related molecular 
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pathways12. The integration of genomics and metabolomics technologies has also allowed a more comprehensive 
coverage of the metabolic pathways involved in complex physiological and pathological processes13,14.

GWAS for metabolic traits (mGWAS)10,15–24 has revealed hundreds of metabolomics quantitative trait loci 
(mQTLs) in the general population22–27. The identification of novel mQTLs in athletes who experience unique 
environmental conditions including special diet and intensive exercise may provide invaluable tools for bio-
marker discovery in relation to exercise and performance. This unique approach could provide better informed 
selection of athletic candidates and crucial information needed for optimal balance between training and recov-
ery for every athlete12. Identified mQTLs in elite athletes could also help in the development of non-conventional 
anti-doping analytical strategies by understanding the genetic predisposition of specific doping-related metab-
olites. Furthermore, elite-athletes-unique mQTLs could offer potential novel therapeutic targets in athletes and 
potentially general population.

The aims of this study are (1) to confirm previously published12 metabolites associated with endurance sports, 
(2) to discover novel genetic loci affecting metabolites in elite athletes by fine-mapping loci to putative functional 
variants at or near sentinel SNPs (a sentinel SNP or sentinel metabolite refers to a lead SNP or a lead metabolite) 
and (3) to discover novel variant loci associated with endurance metabolites underscoring the metabolic individ-
uality of endurance athletes.

Results
Genotyping of 275,016 SNPs that passed quality control measures (see methods) was performed in 490 elite 
athletes belonging to different sport disciplines (Table S1), followed by serum metabolomics of 751 metabolites 
to confirm previously published endurance metabolites12. Subsequent mGWAS analysis was performed to reveal 
novel SNP-metabolite associations by comparing mGWAS hits identified in elite athletes with reference studies 
that were previously performed in non-elite athletes25–27. Finally, novel mGWAS hits associated with endurance 
sports were determined. Figure 1 provides a schematic representation of the study design.

Confirmation of endurance-associated metabolites in elite athletes.  In order to confirm previ-
ously reported associations12, a linear model was used to assess the significance of metabolite associations with 
the endurance level of athletes’ sports (moderate vs high endurance) after correcting for gender, hemolysis levels, 
PCA (PC1 and PC2 from metabolites) and ethnicity groups in a second cohort of 490 athletes. A meta-analysis 
confirmed 104 metabolites identified in both cohorts in association with endurance sports (Table S2), including 
elevation in pregnenolone, androgenic steroids and monohydroxy fatty acids and reduction in diacylglycerols, 
acyl carnitines, gamma glutamyl amino acids and glutathione in the high endurance sports.

Common variant loci influence metabolites (mQTLs) in elite athletes.  By combining genotyping 
and metabolomics data, 145 significant SNP-metabolite associations (Bonferroni p ≤ 2.4 × 10−10) were identified 
(Table S3), with an average inflation factor for mGWAS metabolites of 1.07 (0.96–1.19). Genetic loci were inves-
tigated for known expression quantitative trait loci (eQTLs), mQTLs and functional associations using several 
databases including SNIPA http://snipa.helmholtzmuenchen.de/snipa/, PhenoScanner V2 A database of human 
genotype-phenotype associations http://www.phenoscanner.medschl.cam.ac.uk/, GTEx portal (version 2.1, Build 
#201) www.gtexportal.org, OMIM www.omim.org, Overview of Bravo variant server resources https://bravo.
sph.umich.edu/freeze3a/hg19/ and GnomAD http://gnomad.broadinstitute.org/. By identifying the identities of 
their genes, these associations collapsed into 19 independent loci (Table 1, Fig. 2). The variance explained by 

Figure 1.  Schematic view of the study design. HE: High Endurance, ME: Moderate Endurance, QC: Quality 
Control, PCs: Principle Components.
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these SNPs ranges from the highest value of 43.68% (N-methylpipecolate with rs7072216 in PYROXD2 locus) to 
the lowest value of 8.59% (Ceramide-d16:1/24:1-d18:1/22:1 in SGPP1 locus) with an average of 16.09% (Fig. 3).

The 19 independent loci replicated 15 previously reported loci26,27 (Table  1). The remaining four 
mGWAS loci represented novel associations between specific SNPs and metabolites. Two of these included 
novel gene/metabolite associations, namely rs55729124 in folate hydrolase 1 (FOLH1) in association with 
N-acetyl-aspartyl-glutamate (NAAG) (r2 = 9.35%, p = 2.17E-11) and rs3798793 in vascular non-inflammatory 
molecule 1 (VNN1) in association with linoleoyl ethanolamide (r2 = 10.8%, p = 3.15E-13) (Table 1, Figs. 2 and 3).  
Other novel mGWAS included known gene/metabolite associations, but with novel SNPs. These included the 
third novel mGWAS rs11568825 SNP within the cytochrome P450 family 3 subfamily A member 7 (CYP3A7) 
gene, exhibiting significant association with three different metabolites (androsterone sulfate (r2 = 14.11%, 
p = 3.91E-17), epiandrosterone sulfate (r2 = 9.95%, p = 2.82E-12) and 5 alpha-androstan-3alpha, 17 beta-diol 
monosulfate 1 (r2 = 9.2%, p = 3.31E-11)). The fourth novel mGWAS represented association between rs17101394 
in sphingosine-1-phosphate phosphatase 1 (SGPP1) gene and Cermamide (r2 = 8.59%, p = 1.52E-10). For the 4 
novel mGWAS loci, there were clear genotype-dependent effects on levels of associated metabolites as shown in 
boxplots in Fig. 4.

Regional association plots for the novel loci VNN1 and FOLH1 are shown in Fig. 5. The intronic SNPs within 
VNN1 (rs3798793, Fig. 5a) and FOLH1 (rs55729124, Fig. 5b) loci show the strongest association (−log10 

Elite athletes Non-elite athletes27 Non-elite athletes25

Locus rs ID MAF Metabolite P value Beta SE. Beta r2 (%)
Function 
(GVS) Comment Beta

GWAS 
p-value r2 (%) Beta

Locus 
p-value r2 (%)

FOLH1 rs55729124 0.06 N-acetyl-aspartyl-glutamate 
(NAAG) 2.17E-11 −0.95 0.14 9.35 Intron

Novel gene/
metabolite 
association

VNN1 rs3798793 0.42 Linoleoyl ethanolamide 3.15E-13 0.46 0.06 10.82 Intron

SGPP1 rs17101394 0.17 Ceramide (d16:1/24:1, 
d18:1/22:1)* 1.52E-10 0.52 0.08 8.59 Intergenic

Reported 
SNP 
association 
but with 
different 
metabolites

0.38 3.76E-16 2.4

CYP3A7 rs11568825 0.01 Androsterone sulfate 3.91E-17 −1.88 0.21 14.11 Upstream-gene

0.01 Epiandrosterone sulfate 2.82E-12 −1.55 0.22 9.95 Upstream-gene

0.01
5alpha-androstan-
3alpha,17beta-diol 
monosulfate (1)

3.31E-11 −1.53 0.23 9.2 Upstream-gene

CYP3A7 rs45446698 0.03 Androsterone sulfate 4.62E-31 −1.92 0.15 24.82 Upstream-gene Reported −0.13 1.02E-126 0.5

AGMAT rs6429759 0.48 Beta-guanidinopropanoate 2.98E-25 0.74 0.07 28.54 Intron 0.28 1.57E-14 2.3

CERS4 rs7258249 0.46 Sphingomyelin (d18:1/20:1, 
d18:2/20:0)* 7.17E-11 0.40 0.06 8.6 Upstream-gene −0.3 5.02E-16 2.6

FADS1 rs174547 0.30 1-arachidonoyl-GPC 
(20:4n6)* 1.18E-13 −0.48 0.06 11.04 Intron −0.62 7.86E-69 10.2

KLKB1 rs3733402 0.48 Leucylglycine 6.80E-12 0.40 0.06 9.68 Missense −0.54 2.84E-53 8.8

NAT2 rs1495741 0.27 5-acetylamino-6-
formylamino-3-methyluracil 5.48E-17 0.74 0.08 21.44 Intergenic 0.57 1.39E-134 4.9

NAT8 rs1881245 0.27 N-acetyl-1-methylhistidine* 5.76E-39 0.87 0.06 30.92 Intron 0.28 1.85E-93 1.8 −0.78 4.4 E-47 26.6

PYROXD2 rs7072216 0.35 N-methylpipecolate 1.23E-59 −0.96 0.05 43.68 Intron −0.66 9.13 E-26 18.3

SLC22A10 rs75859219 0.06 Etiocholanolone glucuronide 5.04E-13 0.96 0.13 10.73 Upstream-gene 0.86 4.18E-35 4.8

SLC22A16 rs12210538 0.24 Dihomo-linolenoylcarnitine 
(20:3n3 or 6)* 8.67E-14 −0.54 0.07 11.24 Missense −0.42 3.27E-24 3.8

SLC6A13 rs11613331 0.46 Deoxycarnitine 1.93E-11 0.39 0.06 9.15 Intron −0.44 4.26E-40 5.8

SLCO1B1 rs4363657 0.14 Glycochenodeoxycholate 
glucuronide (1) 7.18E-13 0.69 0.09 10.53 Intron −0.24 7.74E-37 0.9 0.83 3.06 E-31 18.5

SPTLC3 rs680379 0.35
Sphingomyelin (d18:1/25:0, 
d19:0/24:1, d20:1/23:0, 
d19:1/24:0)*

1.20E-12 0.49 0.07 10.24 Intergenic 0.24 7.91E-09 1.5

TMPRSS11E rs35307342 0.36
5alpha-androstan-
3alpha,17beta-diol 
monosulfate (1)

6.48E-12 0.47 0.07 9.9 Intron −0.54 2.14E-07 1.1 −0.74 3.28 E-35 21.4

UGT1A10 rs10168416 0.31 Biliverdin 2.67E-14 0.50 0.06 11.68 Intron −0.27 7.81E-70 0.5

UNC119B rs2066938 0.29 Ehylmalonate 6.16E-37 0.82 0.06 29.79 3-prime-UTR 0.96 1.11E-299 1.5

Table 1.  Nineteen unique locus-metabolite mGWAS pairs identified in 490 elite athletes, including two novel 
gene/metabolite associations and four known gene/metabolite associations but with novel SNPs. r2 is percent 
of explained variance. Highlighted rows indicate novel significant mGWAS. Biochemical Name* indicates 
compounds that have not been confirmed using reference standards, but Metabolon is confident in their 
identities based on exact mass and fragmentation pattern.
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(p-value)) with linoleoyl ethanolamide and N-acetyl-aspartyl-glutamate (NAAG), respectively. The colors cor-
respond to different linkage disequilibrium (LD) thresholds, where LD is computed between the sentinel SNP 
(lowest p-value, colored in blue) and all SNPs.

Common variant loci influence metabolites (mQTLs) in elite endurance athletes.  In order 
to investigate novel mQTLs between athletes’ genotyping data and the confirmed 104 endurance metabolites 
(Table S3), significant (p < 0.05/104*275016 = 1.7 × 10−9) mGWAS associations were identified from amongst 
the list of significant mGWAS hits at p value < 10−6 (Table S4). Four significant associations were found including 
one novel mGWAS association between rs10426201 in SULT2A1 gene and androstenediol (3alpha, 17alpha) 
monosulfate (2). Although the latter association was reported before, it did not reach statistical significance27 
(Table 2). For the novel endurance mGWAS locus in SULT2A1 gene, there was a clear genotype-dependent effect 
on levels of associated metabolite as shown in Fig. 6.

The regional association plot indicates that the intronic SNP (rs10426201) in SULT2A1 gene shows the strong-
est association (−log10 (p-value)) with androstenediol (3alpha, 17alpha) monosulfate (2) (r2 = 8.2%, p = 2.47E-
10) (Fig. 7). The colors correspond to different LD thresholds, where LD is computed between the sentinel SNP 
(lowest p-value, colored in blue) and all SNPs.

Discussion
Historically, the superior performance of elite athletes has been considered an outcome of a special talent shaped 
by intensive training28. The talent is currently believed to be a product of additive genetic components predispos-
ing elite athletes to higher endurance/power trainability under the control of strong environmental cues including 
exercise and nutrition29. Despite the identification of a number of genetic variants associated with athletic endur-
ance, their small effect size made it difficult to replicate in various small cohorts of elite athletes. Therefore, this 
study aimed to identify intermediate phenotypes (metabolites) that could offer direct functional relationship with 
genetic variants in elite athletes in response to their unique environment, hence provide a greater effect size and 
a better chance to be identified. This could help in understanding the superior physical and mental performance 
of professional elite athletes and the identification of novel exercise-related biomarkers in athletic candidates.

To achieve our aims, genotyping was performed in elite athletes from different sport disciplines using a drug-
gable genes-enriched SNP chip. This chip covers various metabolic pathways suited for the investigation of our 
intermediate phenotype of interest (metabolites) without enduring the penalty of multiple testing associated with 
more comprehensive SNP chips30. This was followed by serum metabolomics of the same samples to confirm our 
previously published endurance metabolites12 using Metabolon platforms that offer a very comprehensive untar-
geted metabolomics profiling31. Subsequent mGWAS analysis was performed to reveal novel SNP-metabolite 
associations by comparing mGWAS hits identified in elite athletes with the reference studies that were previously 
performed in non-elite athletes25–27. Finally, novel mGWAS hits associated with endurance sports were deter-
mined using the confirmed list of endurance metabolites from the meta-analysis.

Figure 2.  Manhattan plot for the discovered mGWAS loci. The red line indicates the Bonferroni threshold 
(2.4 × 10−10) and the blue line indicates the genome wide significance threshold (5 × 10−8). The novel gene/
metabolite associations appear in red and the known gene/metabolite associations, but with novel SNPs, appear 
in blue. Previously reported associations are shown in grey.
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Our genotyping data revealed a number of SNPs associated with endurance but none has reached the GWAS 
level of significance (data not shown). This expected outcome may have resulted from our small sample size, small 
effect size of genetic variants and the complex phenotype of physical performance. Therefore, a more precise phe-
notype (metabolites) was sought to obtain larger effect size and a better chance for detection. In our pilot study of 
191 elite athletes we identified a number of metabolites associated with endurance12. In this study, we confirmed 
a number of these metabolites by carrying out metabolomics in a second cohort, followed by a meta-analysis of 
the two cohorts. Among confirmed hits, elevation of pregnenolone and androgenic steroids indicate active ster-
oid biosynthesis pathway in high endurance athletes. Reduced diacylglycerols and acyl carnitines and increased 
monohydroxy fatty acids suggest active fatty acid oxidation for energy generation in the high endurance group. 
Reduction in gamma glutamyl amino acids and glutathione metabolism suggests active oxidative scavenging 
mechanisms in moderate endurance group. These metabolic changes seen in high performance elite athletes may 
reflect various cellular adaptations to prolonged exercise-induced oxidative stress. These may include modulation 
of energy utilization, muscle mass and deployment of stress-scavenging mechanisms as previously suggested12.

Following genotyping and metabolomics analyses, genetically-influenced metabolites were firstly sought 
between elite athletes cohort and published data from non-elite athletes25–27, and secondly within the elite athletes 
cohort between moderate and high endurance groups. Both analyzes revealed novel mGWAS associations with 
significant effect size (between 8–14%, Table 2 and Fig. 3), clear genotype-dependent effect (Figs. 4 and 6) and 
evidence of multiple SNP associations within the same genomic region (Figs. 5 and 7).

The mGWAS results between elite and non-elite athletes revealed 4 novel mQTLs. The first of which is a nega-
tive association between rs55729124 in Folate Hydrolase 1 (FOLH1) and NAAG levels. FOLH1 encodes a type II 

Figure 3.  Percent of explained variance of metabolite by the corresponding SNP in the identified mGWAS loci 
in elite athletes. The height of a column bar reflects the percent of variance explained for each locus. Loci genes 
are indicated above the column bar and corresponding metabolite name on the X-axis. Novel mGWAS loci 
appear in red and previously reported associations are shown in in black. The known replicated loci, but with 
novel SNP or metabolite are typed in blue. Bars are colored according to Metabolon specified pathway for the 
metabolites associated with the locus. Biochemical Name* indicates compounds that have not been officially 
confirmed based on a standard, but Metabolon is confident in their identities.

https://doi.org/10.1038/s41598-019-56496-7
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transmembrane glycoprotein termed glutamate carboxypeptidase II (GCPII) that hydrolyzes NAAG to NAA and 
glutamate32. The intronic SNP rs55729124 may therefore be associated with enhanced FOLH1 activity leading to 
the breakdown of NAAG and accumulation of NAA and glutamate. NAA is a nervous system specific metabolite 
found predominantly in cell bodies of neurons. Aerobic fitness was reported to increase NAA levels, leading to 
improved cognitive enhancement33. The identification of this novel mQTL in elite athletes may suggest augmen-
tation of FOLH1 activity in elite athletes with exercise, resulting in higher NAA levels compared to non-elite ath-
letes in other published studies (Table 3). Interestingly, NAAG serves as a reservoir to provide glutamate to cancer 
cells through GCPII34. The identification of this novel mQTL could potentially be utilized for the development of 
novel strategies for targeting GCPII for cancer treatment.

The second mQTL identified in our athletic cohort is a positive association between rs3798793 in vascular 
non-inflammatory molecule 1 (VNN1) in association with linoleoyl ethanolamide. VNN1 protein possess panteth-
einase activity that may play a role in oxidative-stress response. The endocannabinoid linoleoyl ethanolamide has 
a role as fatty acid amide hydrolase inhibitor as it inhibits arachidonoylethanolamide amidohydrolase. It has also 
been shown to have a neuroprotective role during ischemia reperfusion injury with potential therapeutic benefits 

Figure 4.  Boxplots of levels of metabolites by genotype for novel loci. Boxplots for the loci CYP3A7, SGPP1, 
VNN1, and FOLH1 indicating the metabolite level and the number of samples for each genotype group.

https://doi.org/10.1038/s41598-019-56496-7
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when used as complementary treatment with other therapies to improve stroke outcome35. The link between VNN1 
and linoleoyl ethanolamide is not clear yet. Exercise, however, has been shown to increase serum concentrations of 
endocannabinoids36, thus the identification of this novel mQTL may be due to exercise interaction (Table 3).

The third mQTL involved association of various SNPs in the Cytochrome P450 Family 3 Subfamily A Member 
7 (CYP3A7) with lower serum sulfated steroids37. This is the first report of a negative association between 
rs11568825 in CYP3A7 with 5alpha-androstan-3alpha,17beta-diol monosulfate (1), although association of other 
SNPs within the same gene with same metabolites were previously reported27. Cytochrome P450 enzymes are 
important for the metabolism of many endogenous compounds including various steroids38. We have shown pre-
viously that 5alpha-androstan-3alpha,17beta-diol monosulfate is increased in endurance sports, potentially pro-
viding evidence of environmental interaction with endurance exercise12 (Table 3). Previous studies have reported 
that signaling activated by 5alpha-androstane-3alpha,17beta-diol may represent a novel pathway responsible for 
the progression to androgen-independent prostate cancer39. Therefore, the identification of this novel mQTL may 
potentially aid in designing novel therapeutic targets for androgen-independent prostate cancer.

The fourth novel mQTL was a positive association between rs17101394 in Sphingosine-1-Phosphate 
Phosphatase 1 (SGPP1) in association with Ceramide (d16:1/24:1, d18:1/22:1). Although the association of the 
same SNP with multiple different metabolites was previously reported. These metabolites included various spin-
golipids such as palmitoyl dihydrosphingomyelin (d18:0/16:0), sphingomyelin (d18:1/14:0, d16:1/16:0), sphin-
gomyelin (d18:1/15:0, d16:1/17:0), sphingomyelin (d18:1/20:0, d16:1/22:0), and sphingomyelin (d18:1/21:0, 
d17:1/22:0, d16:1/23:0)27,40 as well as X-08402, and X-1051026 that are also related to sphingolipid pathway20. 
SGPP1 catalyzes the degradation of Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite that 
regulates diverse biologic processes, via salvage and recycling of sphingosine into long-chain ceramides41. Acute 
prolonged exercise was shown previously to influence ceramide metabolism in human skeletal muscle42, perhaps 
explaining identification of this mQTL in our elite athlete cohort (Table 3). Additionally, the identification of this 
mQTL could potentially be utilized for the development of novel therapeutic strategies against atherosclerosis 
since sphingolipids have been directly related to increased risk of atherosclerosis43.

Figure 5.  Regional association plots for the two new loci (VNN1 and FOLH1).

https://doi.org/10.1038/s41598-019-56496-7
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In addition to novel mQTLs identified in elite athletes, we have confirmed 16 previously published mQTLS, 
two of which exhibited greater percent of variance in our elite athletes compared to the ones reported in non-elite 
athletes25,27, including rs7072216 in PYROXD2 in association with N-methylpipecolate (effect size 43% vs 31%) 
and rs1881245 in NAT8 in association with N-acetyl-1-methylhistidine (effect size 30% vs 26.6%). Among the 
16 previously reported loci, 9 loci showed similar direction of association compared to previously published 
studies25,27. Among these, 4 loci showed more than 2 fold increase in their effect size in elite athletes includ-
ing CYP3A7, AGMAT, NAT8 and SPTLC3 in association with androsterone sulfate, beta-guanidinopropanoate, 
N-acetyl-1-methylhistidine, and sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0). Whereas 6 
loci showed opposite direction of association compared to previously reported study including CERS4, KLKB1, 
SLC6A13, SLCO1B1, TMPRSS11E and UGT1A1027. Among these, SLCO1B1 locus showed 2.8 fold decrease in 
its effect size in association with glycochenodeoxycholate glucuronide (1) in elite athletes. The functional rele-
vance of these variable effect sizes remains to be investigated.

When focusing on confirmed endurance metabolites, four mGWAS were identified, of which a positive asso-
ciation between rs10426201 in Sulfotransferase Family 2 A Member 1 (SULT2A1) in association with androsten-
ediol (3alpha, 17alpha) monosulfate (2) was novel. SULT2A1 catalyzes the sulfation of steroids, a process that is 
fundamental for their function. Following biosynthesis, hydrophobic steroids become sulfated to accelerate their 
circulatory shuttling to target tissues. The expression of anion transporting polypeptides on target cells enables their 
uptake. Subsequently, intracellular sulfatases activate them by hydrolyzing the steroid sulfate esters44. The genetic 
predisposition of steroid sulfation in elite high endurance athletes may therefore explain active steroid biosynthesis 
in this group, and could potentially contribute to their elite physical performance. Furthermore, the identification of 
the genetic predisposition to enhanced activity of SULT2A1 could potentially be utilized to determine the percent-
age of sulfated intact molecules with relevance to steroid profiling parameters for antidoping strategies45.

Elite athletes Non-elite athletes27

Gene rsID Chr Position Function GVS N Beta SE. Beta P. Value Metabolite SUB_PATHWAY Metabolite P. Value

SULT2A1 rs10426201 19 48384749 intron 470 0.52 0.08 2.47E-10
androstenediol 
(3alpha, 17alpha) 
monosulfate (2)

Androgenic 
Steroids

4-androsten-
3alpha,17alpha-diol 
monosulfate (2)

2.70E-07

SLC22A16 rs12210538 6 110760008 missense 457 −0.47 0.07 5.19E-10
dihomo-
linoleoylcarnitine 
(C20:2)*

Fatty Acid 
Metabolism(Acyl 
Carnitine)

linoleoylcarnitine 1.58E-24

SLC22A24 rs75859219 11 62913676 upstream-gene 462 0.96 0.13 5.04E-13 etiocholanolone 
glucuronide

Androgenic 
Steroids

etiocholanolone 
glucuronide 9.13E-38

CYP3A7 rs45446698 7 99332948 upstream-gene 468 1.54 0.20 3.07E-13 16a-hydroxy 
DHEA 3-sulfate

Androgenic 
Steroids

16a-hydroxy DHEA 
3-sulfate 2.07E-47

Table 2.  Unique locus-metabolite pairs associated with endurance sports in comparison with previous reports, 
including one novel association between a known locus (SULT2A1) and a new metabolite.

Figure 6.  Boxplot for metabolite-locus pair associated with endurance, indicating the metabolite level and the 
number of samples for each genotype group.
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Study limitation: The use of Mitchell’s criteria based on sport disciplines to dichotomize participants into 
two endurance groups12,46 is a crude method of categorization. A better phenotype would be the actual meas-
urement of VO2max in these athletes. However, due to the strict institutional research board’s instructions, the 
only available information about participants were their sport disciplines and gender. Additionally, the relatively 
small number of participants may have limited the power of the study, however this remains the largest cohort 
of elite athletes with mGWAS data to date as elite athletes samples are very difficult to obtain. Future studies are 
warranted to confirm these findings in larger cohorts using more accurate measures of endurance.

This study reveals for the first-time evidence of genetically-influenced metabolites associated with elite athletic 
status in general and endurance sports in particular. Uncovering these novel associations in elite athletes, but not 
in the general population, could reflect a gene-environment (intensive exercise) interaction that augments the 
effect size of these genetic variants. Among the novel identified mQTLs, SNPs associated with enhanced endog-
enous steroids activity may play an important role in elite athletic performance, especially among endurance 
athletes. The utilization of these mQLTs as biomarkers for selecting athletic candidates with a greater potential to 
becoming elite endurance athletes is warranted and should be further validated. Additionally, the newly identified 
mQTLs in elite athletes could provide crucial information about the interaction between exercise and genetic 
predisposition of some doping-related metabolites, potentially paving the way for development of non-traditional 
indirect analytical strategies for the detection of novel doping strategies. Finally, the identification of these novel 
mQTLs could provide vital clues for potential therapeutic targets as they provide direct functional relationships 
between genes and their products/byproducts with therapeutic values.

Subjects and Methods
Cohort.  Blood and serum samples were collected at anti-doping laboratories in Qatar (ADLQ) and Italy (FMSI) 
from 490 elite athletes who participated in national or international sports events and tested negative for doping 
abuse. Written informed consent was obtained from each participant. This study was performed in line with the 
World Medical Association Declaration of Helsinki – Ethical Principles for Medical Research Involving Human 
Subjects. All protocols were approved by the Institutional Research Board of ADLQ (F2014000009). Table S1 

Figure 7.  Regional association plots for the novel locus SULT2A1.

SNP Gene Metabolite
Functional relationship between 
gene and metabolite

Interaction with athletic performance 
(exercise)

rs55729124 FOLH1 N-Acetylaspartylglutamic 
acid (NAAG)

Gene encodes an enzyme that 
directly cleaves NAAG into 
NAA + Glutamate

Aerobic fitness was reported to enhance 
NAA levels, leading to increased cognitive 
enhancement33

rs3798793 VNN1 Linoleoyl ethanolamide
Gene encodes a membrane protein 
that participates in hematopoietic 
cell trafficking

Exercise increases serum concentrations 
of endocannabinoids including linoleoyl 
ethanolamide36

rs17101394 SGPP1 Ceramide
Gene encodes enzyme that directly 
mediates recycling of sphinogsine 
into cermides

Acute prolonged exercise was shown to 
influence ceramide metabolism in human 
skeletal muscle42

Table 3.  Novel elite athletes-associated mQTLSs reflecting gene/environment (exercise) interaction.
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summarizes the distribution of all recruited athletes according to their sports disciplines into moderate and high 
endurance, groups following published criteria46. It was not possible to involve patients or the public in this work.

Metabolomics.  Profiling of serum metabolites in 490 elite athletes (Table S1) was performed using protocols 
established at Metabolon, Durham, NC, USA. The platform utilizes Waters ACQUITY ultra-performance liquid 
chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer inter-
faced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass 
resolution. Detailed protocol and QC measures were previously published12,31.

Genotyping methods.  Genotyping of 490 elite athletes was conducted using Illumina Drug core BeadChip 
arrays. The chip contains 476728 SNPs including 240,000 highly-informative genome-wide tag SNPs and a novel 
200,000 custom marker set designed to support studies of drug target validation and treatment response. The 
latter SNP set was selected to include the following: 1- genes involved in drug absorption, distribution, metabo-
lism and excretion (ADME), 2- exome content coverage of genes encoding proteins closely related to targets of 
approved small molecule and biotherapeutic drugs or binding drug-like compounds, and 3- other useful content, 
including all SNPs associated at GWAS significance with any human trait marking the X and Y chromosomes 
and mitochondrial DNA, and for sample fingerprinting (common SNPs represented on major genome-wide 
array products from both Illumina and Affymetrix). These SNPs are expected to represent genes involved in con-
trolling the same essential metabolic pathways that regulate the magnitude of physical performance. Following 
genotyping using Illumina’s Drug Core SNP array, the following SNP exclusion QC filters were adopted: gen-
otype call rate < 98% (130526 SNPs were excluded), MAF < 0.01 (70210 SNPs were excluded) and Hardy 
Weinberg p value < 10−6 (976 SNPs were excluded), resulting in 275016 SNPs (Bonferroni significance = (0.05/
(275016 × 751) = 2.4E-10) used for the analysis. Genotype distribution was compared among athletes grouped 
according to the endurance group of their respective sports (data not shown).

Statistical analysis of metabolomics data.  A linear regression model was run using R statistical pack-
age (version 2.14, www.r-project.org/) to assess association between metabolites and endurance level (moderate 
versus high). The model also corrected for the following possible confounders: sport power, gender, hemolysis 
levels (determined visually by Metabolon) and metabolites PCs. Multiple testing was Bonferroni corrected. A 
meta-analysis was utilized to identify metabolites equally influenced by endurance level in both metabolomics 
datasets in the current study and previously published study12. Initially, functions from the R library ‘esc’ were 
used to convert the beta value from the regression analysis of individual datasets into effect size (in this case, 
difference in mean between low and high levels of endurance). The metafor R library was then used to run the 
metanalysis on the derived effects size from the individual datasets. The p-values from the meta-analysis were 
corrected for multiple testing based on FDR correction.

mGWAS analysis.  Associations between SNPs and metabolite levels were computed using lm function in R (ver-
sion 3.3.1) while correcting for gender, hemolysis and predicted ethnicity based on caparison with 1000 genome project 
that was calculated with plink version 1.9. An additive inheritance model was used (SNPs were coded as 0,1,2 according 
to their genotype group). Manhattan and box plots were generated using R (version 3.3.1). Regional association plots 
were produced using SNIPA (http://snipa.helmholtz-muenchen.de/snipa/). Loci and sentinel SNPs association results 
were divided into gene loci, and in each of these the sentinel SNP and sentinel metabolite were defined with 500Kb 
according to the SNP-metabolite association with the highest significance, defining the metabolite quantitative trait loci 
(mQTLs). In the case where a locus had sentinel SNP that could not be found in regional association plotting release 
grch37-1kgpp3v5 (eur) and lying in location of known gene, it was mentioned in association with known SNP loci. For 
example, SNP rs3733402 in locus 5 had P-value of 6.80E-12, however in regional association rs4241816 was indicated 
as it had the 2nd highest p-value 2.02E-11 in locus 5. Both are associated with same gene KLKB1.

mQTLS associated with Endurance.  To determine mGWAS associated with endurance sports, SNPs that 
were significantly associated with 104 endurance metabolites (Table S2) were identified within the list of mQTLs 
from the mGWAS analysis (Table S4). Bonferroni p-value of 1.7 × 10−9 [0.05/(104 × 275016)] was used to report 
a significant association.

Ethics approval and consent to participate.  This study was performed in accordance with the World 
Medical Association Declaration of Helsinki. All protocols were approved by the Institutional Research Board of 
anti-doping lab Qatar (F2014000009) and participants have given consent to participate.

Data availability
All relevant data are within the manuscript and its Supporting Information files.
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