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Published online: 09 February 2018 . Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional

. topological entities have been observed in both classical- and super-fluids, as well as in optical systems.

In superconductors, they remained obscure due to their instability against collapse — unless supported
by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors
- the Josephson vortex loops - formed and stabilized in planar junctions or layered superconductors
as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their
motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of
other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the
context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops
can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency
electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.

Realizing linked and knotted excitations in space-filling fields is one of the key open questions in modern topol-
ogy. To which extent an entire field can be twisted to allow formation of a loop or a knot is a highly nontrivial
affair, requiring subtle interplay of topology and dynamics. Recent advances in fabrication and measurement
techniques made it possible to realize such topological excitations in many areas of physics, including, for exam-
ple, electromagnetism!~3, plasmas (see, for instance, ref.* and references therein), liquid crystals®-%, and quan-
tum®'® and classical fluids''~!*. Depending on the properties of the system, the knotted structures can be either
static, as in the case of optical fields’, or disintegrate through a series of reconnections observed in fluids'".
Superconductors, where elementary topological entities are the vortex lines of quantized magnetic flux, belong
to the latter category. Namely, formation of vortex loops in superconductors is topologically allowed, but they
have inherent energetic tendency towards annihilation. However, vortices in superconductors show much richer
behavior compared to their classical counterparts in fluids'*!°, which opens a broad exploration avenue for the
physics of vortex loops. For example, in a thermally driven regime vortices transit into a liquid phase forming
closed loop structures'®. Thermal fluctuations and Berezinskii-Kosterlitz-Thouless physics are beneficial for the
appearance of vortex loops in layered superconductors'”!%. The filamentary nature of vortices enables vortex
entanglement'®?® and vortex cutting and cross-joining processes?! due to, for example, vortex-vortex collisions
or interactions with boundaries/defects or surfaces?’, which can all lead to formation of knotted or linked vortex
loops. Strong magnetic inclusions inside the superconductor can nucleate vortex loops that mimic the shape of
magnetic field lines?. Nevertheless, although a number of theoretical works have addressed the vortex loop for-
mation, vortex cutting and recombination processes over the years??>-2%, no distinct experimental signature of
linked, knotted or isolated vortex loops has been found to date?”2,

One of the reasons for elusive observation of vortex loops is that most research efforts were directed to
Abrikosov vortex loops, which are typically very small, with radius of about superconducting coherence length
& (see, e.g., ref.?!), and difficult to stabilize for an extended period of time, both detrimental to their experimental
verification. Interestingly, none of the earlier considerations dealt with Josephson vortices, which are arguably the
most intriguing and most dynamic topological defects in superconductivity?*-*, formed in junctions between
superconductors, and quite essential to the layered high-temperature (high-T,) superconducting materials due
to their prospects for THz technology™®. In contrast to Abrikosov vortex loops?!, Josephson vortex loops have no
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Figure 1. Schematics of the system. The perspective view (a) and the side view (b) of two superconducting
layers (with rectangular planar area L x w and thicknessd < \) separated by a normal metal junction
(thickness 6 <)) in the presence of an in-plane field H and perpendicular current I (applied uniformly over
normal contacts). Pillars (radius R), also superconducting, connect the two layers and form barriers for motion
of Josephson vortices in the junction.

core and are far less constrained by coherence length®, thus can be much larger and can offer alternative ways
of manipulation and stabilization in Josephson junctions with specially designed pinning sites. However, the
available studies in the literature were restricted to 1D and 2D models of Josephson junctions, none of which
considered three-dimensional interaction of Josephson vortices with a nanoengineered barrier, or any related
phenomenon in a nanostructured Josephson junction. This was the exact objective of the study presented in this
article, where we consider a three-dimensional Josephson junction of two superconducting layers separated by a
normal metal (see Fig. 1), with an array of superconducting pillars inside the junction which serve as local bar-
riers for the in-plane motion of Josephson vortices (JVs). Such geometry is readily realizable in experiment, and
our results can easily be extrapolated to stacks of Josephson junctions or bulk high- T, materials which are peri-
odically perforated with holes subsequently filled with another superconducting material. Alternatively, granular
superconductors with naturally attributed distribution of Josephson junctions and superconducting shortcuts can
serve as a system where loops can be formed via the dynamical mechanism described in this article.

As a main result, here we reveal a novel topological entity in superconductors - the Josephson vortex loop.
Our numerical simulations show that Josephson loops form around nanoengineered barriers as a result of cutting
and recombination of regular Josephson vortices, as they circumvent barriers during their motion under the
biasing current. We demonstrate that Josephson loops can remain stable in the system within a significant range
of applied currents, as well as after all external drives are switched off. If applied current is large, Josephson loops
undergo various scenarios of collapse, which are not only phenomenologically rich, but also leave clear transport
signatures (in measured voltage for example), which can be used as a proof of existence of Josephson loops in
the first place. As we discuss, Josephson loops can also be directly detected and studied using several available
experimental techniques (ranging from 2D scanning-probe imaging to 3D-sensitive muon-spin rotation and
small-angle neutron scattering measurements). Here reported peculiar responsiveness of the loops to applied
magnetic field, current, local heating, as well as their characteristic dynamics in a tunable range of frequencies,
make Josephson loops very relevant for the superconducting THz technology proposed to date (including more
powerful THz emitters and new designs for THz photonic crystals and filters).

Results

Formation of Josephson vortex loops. As a representative example, we consider two superconducting
layers of dimensions L x w x d =100 x 100§ x 5¢ (£ being the coherence length at the working temperature)
separated by a normal metallic junction of thickness § = 1&, but connected by four pillars of radius R =9¢ which
represent barriers for the moving Josephson vortices (JVs) inside the Josephson junction formed between the top
and bottom superconducting layer (see Fig. 1, and the Methods section for details of our Ginzburg-Landau sim-
ulations). The current is applied uniformly on the layers, namely perpendicularly to the top surface of the upper
layer, and uniformly removed from the bottom surface of the bottom layer. In order to prevent the nucleation of
Josephson vortex-antivortex pairs®® either at the edges of the sample or inside the system (depending on the state
of the junction, see, for example, ref.*®), we apply magnetic field parallel to the junction. Although with magnitude
of just ~1% of the upper critical field H,,, the applied field is sufficient to induce Josephson vortices in the junc-
tion. Note that field H,, induced by superconducting (Meissner) currents in the sample is negligible compared to
the applied field, for large ratio of magnetic penetration depth A and the coherence length & (which is the case in
experimentally fabricated junctions of Nb, NbN (A/§ ~ 20) or YBCO (/£ > 100). The maximum of H,, can be
roughly estimated as a product of the characteristic current density (always lower than the depairing current
density j iy ~ 2 3/3 H_,£/)\?) and the characteristic size (coherence length) of strong currents flow near sample

edges, resultmg in H,, < 2/3+/3(¢*/A\*H,, of the order 10~*H_, for most junctions. This indicates that we can
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Figure 2. Formation of Josephson loops around the barriers in the junction through vortex cutting and
recombination. Voltage-time characteristics of the sample with L =100&, w=100¢, d=5&, 6= 1§, and radius of the
pillars R=9¢, for in-plane magnetic field H=0.01H,, and applied current density j = 0.055j, (applied at t=0),
about 15% of the depairing current density j;, = 0.38j,. For definition of all units we refer to the Methods section
and Table 1. For this uniformly applied current density on the leads the distributed current density in the sample
exceeds the critical Josephson current density j. locally in the junction and the deparing current density locally
inside in the pillars, which enables the onset of continuous flux flow. For here taken Cooper-pair mass and normal-
state resistivity in the junction (=1, (=1, see Methods), we find j. = 0.065j,. Dashed (red) and dotted (blue)
curves show the voltage response of the system when the applied current was switched off at times ¢ =770¢, and
t=680t,, respectively. Panels (a-j) Show the isosurface plots of the Cooper-pair density at the times indicated in
the main panel (taken isovalue is 30% of|¢)[2, ., such that dark blue color outlines the vortex lines; pillars are shown
by the lightest color). To visualize the vortex dynamics, please see the Supplementary Video 1.

A |T[K] L[pm] | w[pm] d [nm] 4 [nm] R [nm]

4.2 1.6 1.6 80 16 150

Jo[Alem?] | ty[ps] | Vo[mV] | jg, [AJem?] | j. [A/cm?] RA [Qpm?]

166 x 107 | 0.67 0.49 631105 | 5-10%,_p— 109, 0.03]._;— 3| com
B | T[K] L{pm] |w[pm] |d[nm] 4§ [nm] R [nm]

6.0 2.65 2.65 130 26.5 397.5

jo [A/em?] ty [ps] Vo [mV] | jig, [A/em?] | j [A/em?] RA [Qum?]

3.65%x10° | 1.84 0.18 L41x10° | L1-10%,_50—22-10%,_, | 0.05]_, —5|o0

Table 1. The estimates of sample parameters for an experimental realization. (A) Geometric parameters of the
sample shown in Fig. 1 and considered in Fig. 2, assuming it made of Nb films [with approximate parameters
£(0)=10nm, A(0) =200 nm, critical temperature T.= 7K, and normal-state resistivity p,= 18.7 Qcm, and
taking typical experimental working temperature of 4.2 K, so that £(4.2K) &~ 16 nm and A\(4.2K) ~ 320 nm in the
Ginzburg-Landau model]. Bottom row gives the estimated values of units for current, time and voltage used in
the calculations, the Josephson critical current density (depending on taken coupling in the junction 1), and the
resistance-area product of the sample (where pn] = p/(). (B) Idem. as A., but for working temperature T=6K
(so that £(6 K) = 26.5 nm and A\(6 K) ~ 530 nm, and all other quantities correspondingly rescaled).

safely ignore any demagnetization effects in the rest of our analysis, since the fields generated by the screening
currents are about 1% of the applied magnetic field (see also Supplementary Note 1 and Supplementary Fig. 1).
Figure 2 shows the voltage-time [V(#)] characteristics of our sample, together with the evolution of the vortex
state shown by isosurface plots of the Cooper-pair density, for an in-plane field of just 1% of the upper critical field
and sufficient applied current to onset the flux flow in the junction. One can see from these plots that the dissipation
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arises from the periodic nucleation and motion of JVs. The minimum of V{(¢) at point a shown in Fig. 2 occurs due
to the slow JV motion when overcoming the edge barrier to enter the junction. Acceleration of JV after passing the
barrier results in a jump in the voltage curve (point b). A local minimum is observed in the V() curve when the JV
slows down after reaching the nanostructured barriers (state c). The Lorentz force due to the applied current further
drives the vortex across the barriers and results in a large deformation of the JV (see panel c). With time, the vortex
finally engulfs the pillars, and accelerates after leaving behind the closed Josephson loops around the pillars (see state
d and maximum V(¢) near point d). The next minimum in the voltage curve is observed when the JV is temporarily
trapped between the pillars (state e). The JV increases the pressure on the preexisting vortex loops at forthcoming
barriers, until those penetrate the barrier area and collapse (shown in panel f) resulting in a local maximum in the
voltage curve (see point f). With time the JV exits the sample after recreating closed loops around the pillars on its
way (panel g). Note that once loops are formed, they remain under continuous pressure of the Lorentz force towards
shrinkage, since opposite sides of the loop experience a Lorentz force in opposite directions. As a consequence, the
formed loops may collapse inside the barrier area (panel /1), which leaves as a trace a maximum in the voltage across
the sample (see point ). After the collapse of the loop, a new JV enters the junction area and the entire process is
periodically repeated, resulting in a periodic voltage response of the sample (see Supplementary Video 1).

Clearly, observation and further analysis of Josephson vortex loops would be facilitated if they were first stabi-
lized as long-living entities. Here we demonstrate that Josephson vortex loops can indeed remain stable inside the
sample after switching off the applied current, continuing the scenario shown in Fig. 2. Dashed red curve in Fig. 2
shows the voltage response of the system when the current was switched off after the JV has left the sample, leav-
ing enclosed vortex loops around each of the pillars (state g). The system subsequently relaxes to the equilibrium
state consisting of only “pinned” Josephson loops (see panel 7). Dotted blue curve shows the time evolution of the
voltage after the current was switched off when the JV was located between the pillars (after state d). In this case
we remain with vortex loops around the pillars and a JV trapped between them (panel j). It is therefore likely that
in a large multilayer system, or a bulk layered superconductor, the stationary state after switching off the current
(and field) would comprise both Josephson loops and Josephson vortices.

Josephson nature of the formed vortex loops. Although the isosurface plots in Fig. 2 are quite
self-explanatory, we should properly characterize the found novel vortex matter from the point of view of other
relevant quantities, particularly Josephson current and the phase across the junction. One expects the usual
Josephson relation between the superconducting current and the gauge-invariant phase difference Af between
the top and the bottom superconducting layer of the junction. To demonstrate the consistency of our simulations
with the standard Josephson relations, we considered the vortex state shown in Fig. 3, under an applied current
(panels a and a’) and after the current was switched off (panels b and b’). Panels a and b correspond to the
cross-section of the junction away from pillars, and capture just one Josephson vortex (the corresponding isosur-
face plots of the Cooper-pair density are shown as insets in Fig. 3). We plotted the gauge-invariant phase differ-
ence A0 = 0, — 0., — 6A along the junction, where 0 is the phase of the order parameter calculated in our
simulations and indices “top” and “bot” refer to the bottom of the top layer and the top of the bottom layer, respec-
tively, while A is the cumulative vector potential across the junction, A = (1/6) L do A, dz (see Methods). A
clear 27 change of the phase difference A6 is seen in these plots (red dots) due to the presence of the vortex. Black
dots in panels a and b show the calculated Josephson current j;, which is somewhat distorted by the applied cur-
rent (a). However, for current switched off (b), the phase difference and the current in the junction can be fitted
by the standard Josephson vortex relations: Af = 4 arctan(exp[(y, — y)/A;]) and j;,=j, sin{4 arctan[ex-
p((yo — »)/AD1}. Blue and yellow curves in Fig. 3b show results of such fitting, for vortex location y,=61.5¢,
Josephson penetration depth \;=4.2¢, and Josephson critical current density j. = 0.0622j,, very close to numeri-
cally found value j_~ 0.065j,. Small deviation of the fitting curves from the simulation results is due to the
Meissner currents, which are not taken into account in the fitting expressions. Panels a’ and ¥’ in Fig. 3 show the
results for the cross-section of the junction that crosses the pillars, hence capture one Josephson loop in addition
to the Josephson vortex of panels a and b. A phase drop by 27 at the Josephson vortex is observed even in this
cross section although the Josephson current is strongly affected by the presence of pillars, resulting in substantial
spatial variation of j, near the pillar. The change of 27 in Af on one side of the pillar, followed by —27 change on
the other, is a direct verification of the Josephson nature of the formed vortex loop.

Mechanism behind vortex loop formation. To understand the mechanism of the loop formation around
the pillars, one should consider two different situations when a vortex line approaches a barrier. If the external
current is strong enough, the vortex cannot be stopped by the pillar - it either elongates and bends around the
pillar, or crosses it transversely. In the first case, a loop has to be formed so that vortex can detach from the pillar,
while for the second case the vortex passes the barrier without loop formation. Which mechanism wins is simply
determined by the needed energy. Let E, be the Josephson vortex energy per unit length and E, the energy of a
vortex per unit length inside the bulk superconductor. Then the energy needed for loop formation is about 27RE,
while the energy required for vortex crossing through the pillar is close to 2RE,. Comparing these energies, one
concludes that the loop can be formed if 7E; < E,.

To demonstrate this convincingly, we conducted additional simulations where we manipulated E, by changing
the critical temperature of the pillars. In the Ginzburg-Landau formalism, the variation of the critical temperature
can be conveniently simulated through an expansion coefficient a(T) = cy(1 — T/T,) in the free energy functional
of the system. Inhomogeneous T,(r) is then included in the calculation as a(r) = a(T)f(r) (see ref.*”), where the
spatially dependent thermal coefficient was taken to be f{r) =1 in the superconducting layers and f(r) <1 inside
the pillars. In real systems, such a suppression f(r) inside the pillar could correspond to lithographically pierced
hole arrays in a high- T, superconductor subsequently filled by a lower- T, material, or locally heated pillars (made
of the same material as bulk), by laser for example, resulting in spatial variation of temperature T(r).
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Figure 3. Josephson current and phase transfer through the junction. Panel (a) For the sample of Fig. 2 and

a snapshot state g under applied current as in Fig. 2, we show the Josephson current density j; and the gauge-
invariant phase difference A6, plotted along the junction in the cross-sectional plane depicted in the inset
showing the corresponding isosurface plot of the Cooper-pair density). Panel (b) The same as in panel (a)

but after the current has been switched off. The blue and the yellow curves are the obtained fits for Af and jj,
respectively, using standard Josephson relations (see text). Panels (¢’ and b’) The same as in panels (a and b), but
for the cross-sectional plane crossing the pillars (see insets). The observed 27 phase changes in A6 across the
arms of the loop prove the Josephson nature of the looped vortex.

Figure 4 shows the behavior of the sample with a single pillar inside the junction, for two different values of f(r) in
the pillar (see sketch in the inset of Fig. 4). For the homogeneous situation (f(r) =1 everywhere, that is the pillar and
the superconducting layers are of the same material), the pillar represents a sufficient barrier for the vortex loop to
be created (see panels a-d) though loop collapses under continued action of the applied current (panel e). However,
once we sufficiently decrease the barrier by reducing the critical temperature of the pillar (taking f(r) =0.25 inside
the pillar) the loop is not formed and vortex penetrates the pillar (see panels f-i). These results clearly support our
premise that the main mechanism for the formation of the loops in the here considered scenario is the interplay
of energy needed for the deformation of the Josephson vortex and the energy barrier to penetrate the pillars. Here
we should mention that we performed similar analysis for pillars up to 20¢ radius, and obtained Josephson loops
without much effort. Since that required elongation of moving Josephson vortices by over 100, we conclude that
Josephson vortices exhibit unprecedented agility that by far surpasses one of Abrikosov vortices. As coreless objects,
Josephson vortices were always expected to be more mobile, but we show here that their ability to cross, cut, twist,
turn, deform or recombine is also superior to their Abrikosov counterparts.
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Figure 4. Barrier dependence of the loop formation. Temporal voltage response of the sample with L =50¢,
w=>50¢, d=>5¢, 6= 1§, junction parameters =1, (=1, and one pillar of radius R = 8¢, for the case of
inhomogeneous T, (modeled via spatial dependence of the coefficient a(r) = a(T)f(r), see text), where solid
black curve corresponds to the homogeneous case (f(r) =1 everywhere) and dashed red curve is the result for
lowered T, (f(r) =0.25) inside the pillars. This can be reformulated by using the critical temperature T, outside
and T, inside the pillars (see inset) and the relation T/T,=1— f(r) (1 — T/T.,). The applied current density is
j=0.047j, and in-plane magnetic field is H=0.02H,. Panels (a-i) show the isosurface plots of the Cooper-pair
density at times indicated in the V(f) curves (with color scheme as in Fig. 2).

We are very confident in this prediction, despite the known limitations of our theoretical model, considering
the recent success of Ginzburg-Landau theory to describe experimentally observed Josephson vortices in meso-
scopic geometries, even at very low temperatures®*. We note that our theoretical approach becomes even more
robust in samples with larger pillars, where the redistribution of current occurs on scales much larger than £, and
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both the order parameter and currents vary smoothly on the scale of £. For the samples with narrower pillars
(below several &), the analysis within the non-linear 2D and 3D Usadel model*® would be valuable to support the
proposed mechanism of loop formation.

Current landscape for stabilization of Josephson loops. In what follows, we discuss the distribution
of the current in the sample for applied current ranging from values insufficient to nucleate vortices in the sample
to values that set vortices in continuous motion, which is intimately related to the mechanism of the loop forma-
tion. We begin with the current-voltage (I-V) characteristics, comparatively analyzed for the sample of interest,
the sample without any pillars, and the sample with a pillar but with no Josephson coupling (¢ = 00). We intend
to show that presence of pillars and consequent redistribution of applied current are instrumental for stabilization
of Josephson loops in the junction. This comparative analysis requires extensive simulations at many different
values of the applied current, hence for numerical convenience we consider a quarter of the sample considered in
Fig. 2, namely a sample with dimensions L x w=>50¢ x 50 and just one pillar. Note that we first verified that the
observed vortex behavior and the critical current densities are virtually the same as for the larger sample of Fig. 2.

The obtained I-V curves for the three considered cases are shown in the top panel of Fig. 5. The sample with
pillar but without Josephson coupling exhibits the lowest critical current since all the applied current on the large
top surface is focused through the narrow pillar. The resistive state is expected when the local current density at
the pillar edge reaches the depairing current density j,, = 0.38jo, which occurs at the critical current
Pl — 0.0225j, Lw (see onset of resistance in the corresponding I-V curve). Just below I} llar the local current
density is very inhomogeneous and it nearly reaches the deparing current density at the edge of the pillar (about
93% jip» See panel 1 of Fig. 5), even though the average current density in the pillar is fp = 1P/ R? & 0.2j (still

only ~53% of the deparing current density). For applied current above I fﬂlar the vortex periodically slips through
the pillar, inducing resistive state and finite voltage without formation of any loops.

In the case of a plain Josephson junction (sample without any pillars) the onset to the resistive state occurs at
the applied critical current I/ ~ 0.045j, Lw, when the local current density near the edge (see panel 2 of Fig. 5)
exceeds the maximal Josephson current density j .~ 0.17j4, = 0.065j, (consistent with the value obtained from
fitting the Josephson vortex in Fig. 3), and the Josephson vortex detaches from the edge and repeatedly crosses the
junction, inducing the periodic oscillations in the voltage and a net nonzero resistance.

Having understood the fundamentals of its components, we now focus on our main system of interest, the two
superconducting layers connected with the pillar and with Josephson coupling elsewhere. This system is not a
simple superposition of the above two systems, and exhibits an intriguing dynamics with multiple threshold cur-
rents. At low applied currents, there are no loops nor vortices in the system, as the edge barrier prevents a
Josephson vortex to penetrate the sample (panel 3 of Fig. 5). At the critical current for the loop formation I=1,,
the local current density at the edge reaches j,, the Josephson vortex is depinned from the sample edge and the
system abruptly transits to a new stationary state with a vortex loop enclosed around the pillar. This transition is
accompanied with considerable current redistribution in the system and current density at the junction edge
drops below j.. We note also that the current density inside the pillar remains well below j,, as can be seen in
panel 3 of Fig. 5. With further increasing the applied current in the range I, <I< I,, the Josephson loop remains
stable. Panel 4 of Fig. 5 shows that at a current just below I, the current density at the pillar edge increases to
about 93% of the depairing current density. In other words, at I, we observe the onset of the resistive state due to
reached depairing current density in the pillar, as was the case also at I” 1t 1 the sample without Josephson cou-
pling. However, in the system with Josephson coupling the loops are already formed for currents I,; <I<1I,.
Moreover, the resistive state in the latter case is much more complex, as already described in Fig. 2, with a
Josephson loop collapse followed by Josephson vortex cutting and interconnection producing a new loop (see
panel 5 of Fig. 5; the local current density in the pillar exceeds j,, prior to collapse of the loop). We finally note that
both I, and [P can be tuned by the size of the pillar, but I, is always lower than I/ 4+ P, due to strongly
nonlinear interaction of the current components flowing through the pillar and the rest of the junction.

After this analysis of the current density distributions, we stress again that although in our simulations the
current is applied uniformly over the junction, it is subsequently redistributed (both inside the junction and
across the superconducting layers) and is always larger inside the superconducting pillars than in the rest of the
junction (see Supplementary Note 2 and Supplementary Fig. 2 for the vertical cross-sections and further discus-
sion of the current distribution). This does not alter our described scenario for the formation of Josephson loops,
but does bring to mind an alternative scenario - nucleation of Josephson loops from within the pillars, using
large applied current only through the pillars. For completeness, we offer the full simulation of such a case in the
Supplementary Note 3 and Supplementary Fig. 3, but we render it difficult to be realized experimentally. Namely,
it would require spatial patterning of the current leads on top of pillars, then multiply larger applied current
density compared to our original proposal for loop formation, and very robust superconductivity in the pillars to
sustain such a large current and consequent heating, as well as to recover fast after current is switched off in order
to stabilize Josephson loops against self-annihilation.

Parametric phase diagram for Josephson loops.  To start the discussion of possible experimental reali-
zation of our findings, we here provide a table of geometric and critical parameters corresponding to the sample of
Fig. 2, assuming it made of Nb films. These parameters are within the experimental reach, especially since the
recent progress in fabrication of small junctions reported in for example refs**. Note that, due to the used =1
and the same normal-state resistivity of the junction pn] as the bulk resistivity p,, the Josephson critical current of
our junction, j, is large and the junction resistance is low compared to nanofabricated junctions of refs***® (see
Table 1 for a simulated sample made of Nb, with j.(ut=1)~1.0 X 10° A/cm? and resistance-area product of
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Figure 5. Current-voltage characteristics and current distribution related to vortex behavior. Main panel:
Current-voltage (I-V) characteristics of the sample with L =w = 50§, d=5¢, 6 = 1€, junction parameters =1,
(=1, and applied magnetic field H=0.01H,,: (i) with a pillar of radius R=9¢ and no Josephson coupling
(=00, blue triangles), (ii) with no pillar but with Josephson coupling (black circles), (iii) with both Josephson
coupling and a pillar of radius R=9¢ (red squares, closely corresponding to the case of Fig. 2). Labeling of the
characteristic threshold currents in the main panel follows the detailed discussion in the text. Panels (1-4)
Represent the isosurface plots of the Cooper-pair density and the corresponding current density distribution in
the stationary states found at the applied currents indicated by yellow filled symbols in the main panel. Panel (5)
same as panels 1-4, but shows the temporal sequence of non-equilibrium states upon onset of the resistive state
in case (iii). Note: in panels (1-5) the current density is normalized by the depairing current density j,;, = 0.38jj.
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~0.03 Qum?). This motivated us to explore how vortex loop states evolve with lowering Josephson critical current
j(p)oc 1/p4 and increasing junction resistance pn] = p/( (thus Cis the ratio of bulk and junction resistivities) within
alarge range of parameters 1 < ;1 < 20 and 0.01 < ¢ < 1. This brings the estimates for both the maximum Josephson
critical current (j.(u=20) 25 x 10* A/cm?) and the resistance-area product of the sample (up to ~0.3 Qum?) much
closer to the experimentally realized values (respectively 10*~10° A/cm? and 1-10 Qum?, see refs***). Note that in
our samples the resistance-area product be conveniently estimated as RA = 2dp + ¢ pn] = 2dp(1 + 6/2d().

The parameters presented in Table 1A are a guide for a corresponding experimental measurement on
Nb-based samples, at T=4.2 K. Do note however that our simulations are temperature and material independent,
and can be adapted to any temperature or material provided that coherence length & and penetration depth A are
known at a given working temperature. To illustrate this, we provide in Table 1B the parameters of our samples if
made of Nb, but at a different working temperature of T= 6K (thus closer to critical temperature T.= 7K, sup-
porting the validity of the Ginzburg-Landau model). At temperatures close to T,, one should consider the effect
of fluctuations as well, which were omitted in the above calculations. Our analysis in Supplementary Note 4 and
Supplementary Fig. 4 indicates that Josephson loops remain stable as long as inflicted fluctuations do not exceed
10% of the bulk order parameter.

Exploring the broad range of parameters, we have identified different stable and dynamic Josephson
vortex-Josephson loop states. Moreover, we detected one more threshold current, labeled I,. Within the current
range I, <I< I, the Josephson vortex, which has entered the sample, is trapped between the sample edge and the
pillar. The loop is formed only at higher currents I > I, and remains stable until I=1I,. In Fig. 6(a), we show the
parametric phase diagram, where three shown surfaces Io(u, (), I, (1, ) and I,(1, ¢) separate phases with no vor-
tices, a Josephson vortex trapped between the edge and the pillar, the phase with a static Josephson loop, and the
resistive state with moving Josephson vortices and successively creating and annihilating loops. All three thresh-
old currents weakly depend on junction resistivity and decrease with increasing s (lowering j.). However, the
range of applied current [I., I,] in which loops are stable broadens with increasing p [compare current-voltage
characteristics of Fig. 6(b) to the ones of Fig. 5; note also 10 times larger differential resistance in the dissipative
state with dynamic loops, due to (=0.01 in Fig. 6(b)]. This robustness of the state with a loop provides confidence
that Josephson loops can be experimentally realized, even for parametric choices outside those considered in
Fig. 6. Our results in all figures remain expressed in dimensionless units, to offer a general insight to experimen-
talists and a possibility to estimate the feasibility of the study for their particular experimental capabilities and
samples. Namely, the units of our simulations (estimated in Table 1 for Nb) can vary strongly from sample to
sample depending on disorder, properties of the junction (barrier materials, oxidation), junction homogeneity,
alignment, and other sample properties that are challenging to control in the process of sample fabrication. In that
respect, one should also consider various sources of microscopic vortex pinning in realistic samples, stemming
from e.g. local variation of electronic mean-free path or critical temperature*!. We did not include such pinning in
the present analysis, assuming that its influence would be averaged out on the scale of the Josephson vortex core,
hence would not affect the described dynamics of Josephson vortices and the reported formation of Josephson
loops in our samples. Concerning the vortex dynamics prior to the formation of the loops, it may be influenced to
a certain degree by pronounced inelastic scattering (short scattering time, see e.g.*?), known to effectively “stiffen”
the superconducting condensate and increase the viscosity for the vortex motion®. Still, such effects are far less
relevant to Josephson vortices moving inside a superconducting junction.

Experimental detection of Josephson vortex loops. All dynamic processes described in Fig. 2 leave
traces in the voltage generated across the sample (as shown in Figs 2 and 4). These features are in the
micro-to-milivolt range, and thus measurable. The loop formation, recombinations and collapse events are
fast-occurring (in MHz-THz frequency range), but are definitely detectable in transport measurements. Note that
the frequency of shown events depends on the applied magnetic field, current and temperature, and can be firmly
tuned to the THz regime, especially in high-T, superconductors where p,, is an order of magnitude larger than in
Nb (see, for instance, ref.* for YBCO) so that f,oc 1/p, of our calculations is correspondingly smaller and events
faster. Thereby, the dynamic features associated with Josephson vortex loops are relevant to further design of THz
technology, particularly dc-to-THz converters, THz emitters, but also filters/wavequides for electromagnetic radi-
ation of frequencies matched by the (tunable) dynamics of the loops.

In a stationary state, we point out the possibility to directly visualize Josephson loops in applied tilted mag-
netic field, using a small out-of-plane component of the magnetic field to generate pancake vortices in the super-
conducting layers (see for example ref.’). Since there is a mutual attraction between pancake and Josephson
vortices (as discussed in refs**-? and references therein), pancake vortices are expected to “decorate” Josephson
loops and form ring structures - visible by standard surface imaging techniques (including Scanning Hall-probe
Microscopy>?, Magnetic Force Microscopy®®, Scanning Tunneling Microscopy>®®’, and other), as has been
demonstrated experimentally by several groups for the case of regular Josephson vortices®**5-%3. Another pos-
sibility to directly detect Josephson loops is the muon-spin rotation (uSR) measurement®, since muons will be
scattered from the loops as a 3D magnetic object, and leave a clear signature of that - distinct from any other
signature of quasi 2D objects such as Abrikosov, Josephson or pancake vortices®.

Moreover, some direct imaging techniques can benefit even from dynamic responsiveness of the Josephson vor-
tex loops. Here we particularly have in mind the low-temperature Laser Scanning Microscopy (LTLSM)®, where
imaging is made based on the voltage response due to the local motion and dissipation of vortices under action of
the laser (local heating). This means that in our system, when laser acts away from the Josephson loops the voltage
response will be minimal, whereas maximal voltage response is expected when the impact of the laser occurs near
the loops, causing their shrinkage or expansion. We have tested this premise in the sample with the same parame-
ters as in Fig. 2, where the vortex loops around the barriers were shown to remain stable when the applied drive is
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Figure 6. Josephson loop phase diagram as a function of the junction parameters. Panel (a) The critical
currents for nucleation of the vortex in the junction (I,), the formation of the Josephson loop (I,,), and the
onset of flux flow (I,), for the sample of Fig. 5 but for varied coupling (parameter ;=1 —20) and the normal
state resistivity of the junction (pn] = p/¢ ¢=0.01 —1). Insets show exemplary states, obtained for =10 and
¢(=0.01. Panel (b) Current-voltage (I-V) characteristics of the sample with L =w=50&, d=5¢, § =1 and
applied magnetic field H=10.01H,,, compared for samples without a pillar and with a pillar of radius R = 9¢, for
the realistic case of relatively weak coupling and large resistivity in the junction (1 =10, (=0.01).

significantly reduced. In our Ginzburg-Landau simulation, the impact of the laser is taken into account as a local
increase of the temperature (“hot spot”), using the spatially and time dependent a(t, r) =0 inside the hot spot. In
other words, we increase the local temperature to T= T, for ¢ > t, where t,is the moment of the laser action. Figure 7
shows the voltage response of the sample when the laser acts between the pillars (solid-black curve) or on top of
any of the pillars (dashed-red curve). In the former case, very weak dissipation is observed due to the formation of
a hot spot (panels a and b). However, when the laser acts near the loops (in this particular case on top of the pillar,
see panel ¢), the annihilation of the vortex loop is observed (panels d-f), which results in a pronounced voltage peak
across the sample. We therefore conclude that such dynamics can be distinctly detected by LTLSM.

Of course, the exact distribution of heat due to action of a laser on a particular sample, and the consequent
behavior of the loops and the measured signal, can only be assessed if the time-dependent heat diffusion is con-
sidered on equal footing as the vortex motion. As discussed in more detail in ref.%’, the heat capacity of the sample
controls the speed of local heating/cooling, whereas the heat conductivity controls the spatial extent of heat-
ing. Vortex motion itself heats the sample and favors alignment of vortex trajectories*>*. Although those affect
the dynamical processes in the junctions such as ours, we do not expect that exact description of local heating
will change any of the fundamental mechanisms of Josephson loop formation and stabilization reported in this
manuscript.
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Figure 7. Response of the Josephson loop to a focused laser beam. Voltage-time response of the sample of
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pillar (dashed red curve). The applied current density is j=0.047j,, in absence of magnetic field. Panels (a—f)
Isosurface plots of the Cooper-pair density at times indicated in the V() curve (with color scheme as in Fig. 2).
Dashed yellow circles denote the hot spot used to simulate the laser impact.
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Discussion

The present simulations have revealed several important features in the dynamics of Josephson vortices in (arti-
ficial) Josephson junctions with pillars or other nanostructured barriers, which can be used for the realization of
Josephson vortex loops in superconducting systems. The observed dynamics is characterized by vortex cutting
and subsequent recombination processes during circumvention of the barriers, resulting in stable closed loops
around the barriers. The life time of these vortex loops, as well as their further dynamics, depend on both the
external parameters (such as the applied current and magnetic field) and the parameters of the system itself (for
example, the size of the barriers, the thickness of both superconducting and metallic layers). In what follows, we
discuss several more novel and essentially non-adiabatic processes associated with the formation, existence, and
destruction of Josephson loops.

Obviously, the size of the pillars plays an important role in determining the temporal stability of the vortex
loops and the mechanism through which they dissolve. For example, as was shown in Fig. 2, for the smaller size of
the pillars the loops collapse inside the barrier area due to the Lorentz force of the applied current, which enforces
the contraction of the loops. One can expect a different scenario for the case of a larger barrier, so that it pre-
vents the penetration and collapse of the loops. To examine this situation, we show in Fig. 8 the dynamics of the
Josephson vortex (JV) for a sample with a single pillar of larger size (R=15¢). As is intuitive, the JV has to deform
strongly to circumvent such a large barrier [see Fig. 8(a)]. Nevertheless, even for this larger size of the barrier we
observe the formation of an enclosed loop around a pillar [Fig. 8(b)]. This is in agreement with our qualitative
adiabatic analytical condition of loop formation E,/E, > 7, which does not depend on the pillar radius, allowing
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Figure 8. The escape of the Josephson vortex loop perpendicularly to the junction. Isosurface plots of the
Cooper-pair density at time intervals t = 660¢, (a), t =740¢, (b), t =780t, (c) and t=790¢, (d) showing the
dynamics of the Josephson vortex in the presence of a pillar of size R=15¢, formation of the loop around the
pillar, and its tilt. The bottom row shows a zoom of the side view of (c,d). The applied current density was
j=0.055j, (applied at = 0) and the in-plane field H=0.01H,,. Sample with = 1,{=1 and dimensions are
L=100&, w=100§, d=5€ and 6 =1€.

loop formation around very wide pillars. However, due to the continued action of the current I > I,, the loop
should lose its stability. It turns out that penetration and collapse of the loop inside the barrier is energetically
very costly, and therefore the loop prefers to tilt perpendicular to the junction and penetrate the superconducting
layers, as shown in Fig. 8(c) (see also zoom-ins in the bottom row of Fig. 8). Note, this process breaks the sym-
metry of the initial problem in vertical direction. The loop breaks open when it reaches the surface of the sample
(bottom side in this particular case) and leaves the system as a semi-loop which shrinks down to annihilation
while avoiding the pillar [Fig. 8(d)]. Note that in the case of breaking vertical symmetry in a multilayer and more
loops above/below the one we discussed in Fig. 8, the adjacent loops would simply tilt, open and shrink in parallel
to each other, or form a vortex helix, the new superconducting vortex entity similar to magnetic helical structures.

The variation of the external parameters (for example the applied current and/or magnetic field) controls the
lifetime of the loop and the mechanism of its collapse. This is illustrated in Fig. 9, where we plot the evolution of
the enclosed Josephson loop when the subsequent JV approaches it. Due to their mutual repulsive interaction, the
new JV pushes the loop in the direction perpendicular to the junction [see Fig. 9(a)]. The loop eventually reaches
the top surface of the sample [Fig. 9(b)] and leaves the system in a previously described fashion. Note, however,
that here the size of the pillar is R =9&, where the Josephson loop on its own would collapse inside the barrier - as
discussed in Fig. 2. In spite of that, and the fact that the current is larger in the present situation as compared to
Fig. 2, such that we have a larger Lorentz force acting to collapse the loop, the increased speed of the incoming
Josephson vortex completely changes the process of destruction of the loop. This supports our earlier statement
about the variety of different stable and dynamic Josephson vortex-Josephson loop states when changing external
and/or geometrical parameters. This illustrates the relevance of the timescales of the different involved dynamic
processes and the fundamentally non-adiabatic character of the discussed phenomenon, going beyond our initial
qualitative and adiabatic description of the loop formation mechanism via energy comparison, and worthy of
further investigation.

Our simulations have also revealed one more mechanism for the destruction of Josephson loops in a nanoen-
gineered junction, particularly fascinating since it involves the change in chirality of the loops. In this scenario,
the incoming vortex erases the preexisting loop, and does not leave a new loop behind. Such a scenario is more
likely to take place for smaller thickness of the superconducting layers, as is, for example, the case in bulk layered
superconductors.

To illustrate this mechanism, we show in Fig. 10 the topological evolution of moving JVs in the sample with
slightly thinner layers than above (d =4¢). As one expects, the JV becomes strongly deformed near the barrier
[Fig. 10(a)], creating an enclosed loop around the barrier [Fig. 10(b)]. Instead of observing the collapse of the
loop in the barrier area, or its tilt towards the top/bottom, we now found that two Abrikosov vortex-antivortex
(or “pancake-antipancake”) pairs are created in the top and bottom layer of the junction [highlighted by red/
black arrows in Fig. 10(c), see also Fig. 10(c’)]. The top pair provides a topological solution for the loop to split
open in the top layer, whereas the bottom pair interconnects by a new loop in the junction area, with opposite
chirality to the previous one. Subsequently, both pairs traverse the perimeter of the barrier, annihilating on the
other side, so that the first existing loop shrinks to annihilation, and the new loop is fully formed (see cartoon in
Fig. 10). Due to its reversed chirality, the new loop now attracts the incoming JV, which results in their recombi-
nation [Fig. 10(d)] and easy “tunneling” of the Josephson vortex through the barrier [Fig. 10(e)] without leaving
a Josephson loop behind [Fig. 10(f)]. Please find in Supplementary Video 2 our animated data of the evolution of
the Cooper-pair density and the phase of the order parameter during this process.
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Figure 9. The escape of the Josephson loop under pressure from the incoming Josephson vortex. Isosurface
plots of |¢]* (with time interval of ¢t =30t,) at H=0.01H,, and j = 0.057j, for same sample parameters as in
Fig. 2, but with just one pillar. Due to faster speed of the incoming Josephson vortex as compared to Fig. 2,
the dynamic process of the collapse of the Josephson loop changes from shrinking inside the barrier to a
perpendicular tilt and escape around the barrier.

In summary, we predict formation and stabilization of new 3D topological objects in superconductors -
Josephson vortex loops - in Josephson junctions and layered superconductors with nanoengineered barriers for
the motion of Josephson vortices under an electric drive. Josephson loops are then created via cutting and recom-
bination of moving Josephson vortices, and remain stable in the sample in a range of applied currents as well as
after the applied current is switched off. When critical to destabilize (depending on the size of the barriers, applied
magnetic field and current, as well as other parameters of the exact system of interest), Josephson loops can either
self-annihilate inside the barrier, or tilt perpendicularly to open and shrink to disappearance next to the barrier,
or vertically interconnect with adjacent loops in the stack and form novel helical structures. The further incoming
Josephson vortices can pressurize the loops to collapse, but then pass the barrier and create new loops instead of
the collapsed ones. However, incoming Josephson vortices can also erase a preexisting loop, if the loop changes
its chirality beforehand. The latter process is quite fascinating, as it involves a spontaneous shrinkage of one loop
and the creation of another with opposite circulation, so that the barrier becomes transparent to the incoming
Josephson vortex via recombination, in remote analogy to the Klein paradox®.

Josephson loops are therefore a very rich study object, detectable in experiment by direct imaging in tilted
magnetic field, using muon-spin rotation, small-angle neutron scattering, laser scanning microscopy, or via
traceable features in transport measurements. These loops are crucial for the understanding of the dynamics
of Josephson vortices in the presence of a pinning landscape and may be a missing link towards realizing more
complicated knotted and linked topological structures in superconducting systems, as well as new advanced
emitters (exploiting radiation of moving Josephson vortices”®’"), filters of THz radiation (so-called THz photonic
crystals, see for example refs’>”*), THz superconducting detectors based on Josephson plasma surface waves”,
THz nonlinear and quantum devices’>, as well as THz wave guides”’. Generally speaking, Josephson loops will
be relevant to any layered system with spatial inhomogeneities, should those be inclusions of any shape, or regions
of higher Josephson coupling. Furthermore, the vortex loops can form in granular high-temperature supercon-
ductors and be linked to the experimentally observed paramagnetic Meissner effect’®”, since superconducting
granules of arbitrary orientations and shapes can inter-penetrate and form superconducting shortcuts in the sur-
rounding Josephson media leading to interconnected loops and the onset of spontaneous magnetization. Finally,
we have also shown that Josephson loops can be created by local current injection, similarly to the observed stabi-
lization of the vortex loops by the current flow in liquid Helium IV¥®. Exploring these analogies further is bound
to lead to a better understanding and control of vortex loops in superconductors, as well as to reveal a plethora of
novel phenomena.

Methods

Theoretical framework. Our model system consists of two superconducting layers separated by a normal
metal junction, where an array of pillars (each of radius R and of either the same superconducting material as
the layers or material with lower critical temperature) connects the superconducting layers (see Fig. 1). For this
system, we solved the dimensionless time-dependent Ginzburg-Landau (GL) equation:

u (10t + ip) = (V — iA)y + (f(r, ) — [¥f ) + x(x, 1), (1)

where f(r, t) accounts for spatially and/or temporally varied temperature (as for the case of switching local heating
by laser) or critical temperature in the pillars if they are made of different superconducting material®’. Fluctuating
field x(r, t) allows to check the stability of obtained solution with respect to white noise with zero average and
no correlations in time and space, i.e., (x(r; £;)) =0, {x(r; £)x(11, t;)) = X6;x0;, with the noise intensity y and
the Kronecker delta 6 calculated in discrete grid points (see ref.3!). Most numerical calculations were done with-
out noise (x =0), except the simulations where the stability of the loop against fluctuations was checked in
Supplementary Note 5.
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Figure 10. Change of chirality of the Josephson loop prior to annihilation with a moving Josephson vortex.
Creation of the Josephson loop (a,b), its consecutive change of chirality (c,d), and annihilation with the
incoming Josephson vortex (e,f), shown as isosurface plots of [1)]%. The change of chirality occurs via creation
and motion of vortex-antivortex pairs in the superconducting layers interconnected by semiloops in the
junction area, as schematically shown in (g). The sample with ;1 =1,{=1 and dimensions are L = 120¢,
w=100&, d=4¢, 6=1£ and the radius of the pillar is R= 8. The magnetic field is H=0.01H,, and the current
density is j = 0.052j,. The shown snapshots are taken at times ¢ = 1080¢, (a), t =1090¢, (b), t =1115¢, (c),
t=1130¢, (d), t=1060¢, (e) and t=1180¢, (f) (t= 0 refers to switching on the current). Panel (c’) shows a
contourplot of the phase of the order parameter at the surfaces of the sample at time t = 1115¢, [the state shown
in (c)]. To visualize the vortex dynamics, please see Supplementary Videos 2 and 3.

Josephson tunneling between the layers is incorporated using the following boundary conditions:
(—iV, — A" = ﬁ [¢(x, y, D)exp(—iAd) — ¥(x, y, d)],

. 0 i -

(=iV, = A = —[¥(x, y, d)exp(iAS) — Y(x, y, D)],

ud (2)
at the interface of the junction area (excluding the pillars) with the bottom and the top superconducting layer,
respectively. Here A is defined as A = (1/6) fd v A,dz, D=d+ 6 (see Fig. 1), and p1 is the coupling parameter
(taking into account the ratio of the mass of the Cooper-pairs in the metallic and superconducting regions). The
superconducting-vacuum boundary condition n(—iV — A)y|, = 0 (no supercurrent leaving the sample) is
applied at the other boundaries, with n being the unit vector normal to the surface. Equation (1) is coupled with
the equation of the current continuity which can be rewritten as an equation for the electrostatic potential ¢:
\Y4 "<r) *=V ) = div(j,)» where g, is the normal-state conductivity of the used superconductor (o,(r) can be taken

lower ‘inside the junction, as 0;//g, = ¢ < 1), and the superconducting current component is given by
. 1 2
= —(W*Vy — pVy*) — Ay,
j, = W'V — V) — Ayl )
From Eq. (2), we derive the Josephson current across the junction as*

i (=i = Wy D)exp(—iA §)*(x, y, d)
—1*(x, y, D) exp (iA 8)(x, y, d)]/2iué. (4)

Using Eq. (4) as well as relations 9(x, y, D) = [t),,,|exp(if;,,) and 1(x, y, d) = |1)yo]exp (i), one can easily
derive the usual expression for the Josephson current

j] = jc Sin(etop - Ghot - K(S) (5)

in the junction between two superconducting layers, with j. = [t),,%,,|/ 116. Near pillars, the value [1,4,00]
becomes a strong function of (x, y), resulting in a significant deviation of the current from the well-known
Josephson dependence of the superconducting current in a Josephson junction where j. is constant. For spatially
uniform critical current ji, the Eq. (5) is linked to the usual Josephson energy term ox E; cos(6,,, — 0o — A6)
with E;ocj,, hence the current between top and bottom superconducting layer in our system (away from pillars)
exactly corresponds to the usual Josephson current accumulating the Josephson energy in the Josephson junction
between top and bottom superconducting layers. Note that the total free energy F of the considered system con-
tains both GL energy of the superconducting region (both layers and pillars) as well as the Josephson coupling
energy of the junction:
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F = f dxdydz{|(V — iA)?MZ *f(l‘)|1/)|2 + 1‘1/44}
v 2
1 — 2
o fs dxdy [1(x, y, D)exp(—iA ) — (x, y, )|

2
+Ha [} dxdydz(7 x A2,
2H PV (6)

where the total free energy F is normalized by HZ/47 (H, being the thermodynamic critical field). The integration
region V" contains both superconducting layers as well as all pillars, while integration of the magnetic energy is
performed over entire space. Josephson coupling in F is represented by the integral over two-dimensional surface
S" which covers the bottom surface of the top layer and the top side of the bottom layer, except of pillar areas. By
calculating functional derivative of this free energy with respect to superconducting order parameter ¢* and
vector potential A, we can easily derive equations (1) and (3) as well as the Josephson relation (2), which we used
in our simulations.

The external current is injected through the normal-metal leads, simulated by 1) =0 and the boundary condi-
tion for the electrostatic potential Vi = =+j, with j=1I/S being the applied current density, with I the applied
current and S the area of the top surface of the sample. In all equations, the length is expressed in units of the
coherence length £ and the vector potential is scaled to ¢y/(27€) (where ¢, is the magnetic flux quantum), so that
the unit for magnetic field is H,, = ¢/(27&?). Time is in units of f,=47\{o,/c?, the electrostatic potential is in
units of V= c¢y/87%c, A2, and the current density is scaled to jo = c¢y/87>N\%E. The parameters u was taken as 5.79
(as stemming from microscopic theory, see ref.*?), whereas 1 and normal-state conductivity of the junction were
varied in a broader range: 1 < ;¢ <20 and 0.01 < { < 1. Using £(0) = 10 nm, A(0) =200 nm, critical temperature
T.=7K, and p,=1/0,=18.7 1Qdcm, which are reasonable values for Nb thin films®, and taking typical experi-
mental temperature of 4.2 K, one obtains ¢y~ 0.67 ps, j,~ 1.66 - 107 A/cm?, and V,~0.49 mV. Therefore, we report
observation of Josephson loops in a rather broad range of junction parameters: the critical Josephson current
density 5 x 10* < j, < 10° A/cm?, and the sample resistance-area product in the interval 0.03-0.3 Qum? We
neglected demagnetization effects, which is valid for extreme type-II superconductors. The used coupled nonlin-
ear differential equations were discretized using the link variable approach (see, for example, refs®*#4) and solved
self-consistently in three dimensions using explicit Euler (for ¢) and multigrid (for () iterative procedures.

We also ensure that the neglected magnetic field generated by the current in the sample does not affect the
predicted effects. This has been confirmed by using the iterational procedure: first, calculating the distribution
of the order parameter and currents inside the sample in the spatially homogeneous field equal to the applied
field, and, then, using the 3D Maxwell equations with the obtained current density to calculate corrections to the
magnetic field distribution, and consequently the order parameter as well®. After such self-consistent solution of
both Ginzburg-Landau and Maxwell equations, the obtained results indicate that the corrections to the magnetic
field are negligible (see Supplementary Note 1).
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