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Supplementary Figure 1: Replication in the QMDiab study. We attempted replication of all pQTMs from the discovery study in QMDiab. Before regressing out any covariates, 12,606 of the 38,492 initially identified pQTMs replicated at a Bonferroni significance level (P < 0.05 / 38,492). We show how the number of replicated pQTMs varies at each subsequent regression step. The numbers next to the covariates represents the total number of Bonferroni significant pQTMs for that step. The list of replicated pQTMs identified at the different steps of the EWAS are provided in Supplementary Data 2. Vertical alignment represents pQTMs that were already significant in a previous step.
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Supplementary Figure 2a: Manhattan plots for step-wise pEWAS (Step 0)
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Supplementary Figure 2b: Manhattan plots for step-wise pEWAS (Step 1)
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Supplementary Figure 2c: Manhattan plots for step-wise pEWAS (Step 2)
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Supplementary Figure 2d: Manhattan plots for step-wise pEWAS (Step 3)
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Supplementary Figure 2e: Manhattan plots for step-wise pEWAS (Step 4)
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Supplementary Figure 2f: Manhattan plots for step-wise pEWAS (Step 5)
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Supplementary Figure 2g: Manhattan plots for step-wise pEWAS (Step 6) 
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Supplementary Figure 2h: Manhattan plots for step-wise pEWAS (Step 7) 



Histogram of inflation per protein (Step 0 - No Covariates)

inflation per protein
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Supplementary Figure 3a: Step-wise inflation per protein (Step 0) 



Histogram of inflation per protein (Step 1 - Sex)

inflation per protein
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Supplementary Figure 3b: Step-wise inflation per protein (Step 1) 



Histogram of inflation per protein (Step 2 - White Blood Counts)
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Supplementary Figure 3c: Step-wise inflation per protein (Step 2) 



Histogram of inflation per protein (Step 3 - SNPs)
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Supplementary Figure 3d: Step-wise inflation per protein (Step 3) 



Histogram of inflation per protein (Step 4 - Age)
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Supplementary Figure 3e: Step-wise inflation per protein (Step 4) 



Histogram of inflation per protein (Step 5 - Smoking)
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Supplementary Figure 3f: Step-wise inflation per protein (Step 5) 



Histogram of inflation per protein (Step 6 - Body Mass Index)

inflation per protein
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Supplementary Figure 3g: Step-wise inflation per protein (Step 6) 



Histogram of inflation per protein (Step 7 - Diabetes)
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Supplementary Figure 3h: Step-wise inflation per protein (Step 7) 
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Supplementary Figure 4: Enrichment/depletion barplots for various CpG designations. Enrichment/depletion is computed using the fisher’s exact test and the error bars represent the 95% confidence interval for the odds ratio.



0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
2

0
2

4

NLRC5 cg07839457

1,
3,

7−
tr

im
et

hy
lu

ra
te

 [u
rin

e]

0.1 0.2 0.3 0.4 0.5 0.6 0.7

−
3

−
2

−
1

0
1

2
3

4

NLRC5 cg07839457
ne

op
te

rin
 [u

rin
e]

sbz2002
Typewritten Text
Supplementary Figure 5: Association between NLRC5 methylation (cg07839457) and the urinary 1,3,7,-trimehylurate and urinary neopterin (QMDiab).
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Supplementary Figure 6: Correlation plot of 72 CpG sites associated with pappalysin-1 (PAPPA).
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Supplementary Figure 7:  Correlation plot of CpG sites and proteins (pQTMs) in the NLRC5 network.



Supplementary Note 1: Replication of previous pEWAS 

In a previous EWAS with three Olink panels (cardiovascular, inflammation, and oncology)  

[1], NLRC5 methylation (cg07839457) was associated with CXCL9, CXCL11, IL-12 and IL-18. 121 

protein biomarkers were measured in that study, of which we cover 85 (70%) in our panel. Ahsan 

et al. reported 188 pQTMs (44 proteins and 169 CpG sites) of which we shared 27 proteins 

(SOMAscan) and are able to attempt replication of 114 pQTMs. We attempted to replicate these 

114 pQTMs and only replicated 7 of them (6%) at Bonferroni significance (p < 0.05/114= 4.39x10-

4), 18 (15.8%) at nominal significance (p<0.05) (Supplementary Data 10). However, 64 pQTMs 

(56%) displayed the same trend of association between the two studies. Most importantly, we did 

replicate the association between C-X-C motif chemokine 11 (CXCL11) and 2 NLRC5 methylation 

loci (cg07839457 and cg16411857). Our other main associations could not be checked as they 

were not included in their panel. Although Pappalysin-1 was measured in Ahsan et al., it did not 

pass QC and was excluded from their study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 2: Details of pQTMs eliminated at each step of the pEWAS 

 

Identification of pQTMs driven by gender  

After regressing out gender, 2,708 pQTMs (71 proteins and 1,192 CpG sites) were no 

longer significant. However, in some cases pQTMs became significant due to the correction for a 

potential confounder. This was in particular the case for gender, where 2,347 new pQTMs reached 

Bonferroni significance and were replicated. As expected, many of the pQTMs driven by gender 

implicated sex-related proteins, such as follicle stimulating hormone (CGA FSHB; 332 eliminated 

pQTMs), leptin (LEP; 313 pQTMs), human chorionic gonadotropin (CGA CGB; 207 pQTMs), and 

prostate-specific antigen (KLK3; 191 pQTMs). The CpG sites of gender-driven pQTMs included 

previously identified autosomal gender-related sites, such as cg11955727 (chr2:84,105,546; 36 

pQTMs), cg20926353 (TLE1; 35 pQTMs), and cg00399683 (chr7:153,109,375; 34 pQTLs) [2] [3].  

 

Identification of pQTMs driven by white blood cell composition 

After regressing out white blood composition, 12,077 pQTMs (21 proteins and 10,751 CpG 

sites) were no longer significant. Those pQTMs were dominated by calgranulin B (S100A9), a 

calcium binding protein that is expressed in neutrophils, with 8,495 pQTMs, granzyme A (GZMA), 

a cytotoxic serine protease present in T-lymphocytes, with 2,499 pQTMs, myeloblastin (PRTN3) 

found in polymorphonuclear leukocyte granules, with 528 pQTMs, granulysin (GNLY; 315 pQTMs), 

and matrix metalloproteinase-9 (MMP9; 193 pQTLs), among others.  

 

Identification of pQTMs driven by genetic variation 

After regressing out genetic variation, 154 pQTMs (62 proteins and 134 CpG sites) were no 

longer significant. For 90% of these 62 proteins, a genome-wide significant pQTL was already 

identified in our previous GWAS [4]. In addition, for 43% of these 134 CpG sites, a meQTL was 

already identified in BIOS [5].  



Identification of pQTMs driven by age 

Regressing out age eliminated 88 pQTMs (61 CpG sites and 18 proteins). Of these 61 CpG 

sites, 39 (64%) were previously linked to age in at least one other EWAS [3, 6-9]. Proteins involved 

in the age-driven pQTMs included A disintegrin and metalloproteinase with thrombospondin 

motifs 5 (ADAMTS5; 37 pQTMs), pleiotrophin (PTN; 6 pQTMs), macrophage metalloelastase 

(MMP12; 4 pQTMs), follistatin-related protein 3 (FSTL3; 2 pQTMs), and chordin-like protein 1 

(CHRDL1; 1 pQTM). These proteins were previously associated with chronological age [10]. In 

KORA, CHRDL1 and PTN are also associated with 12 and 7 of the clock CpG sites identified in 

Horvarth et al. [6], respectively. Interestingly, these two proteins were also previously identified 

as the strongest associations with chronological aging in the TwinsUK study using an earlier version 

of the SOMAscan assay [10]. CHRDL1 was also significantly associated with birthweight and the 

individual Framingham 10-year cardiovascular risk score. PTN is a secreted growth factor with 

many functions in multiple tissues and known to be a marker for cardiovascular risk and 

osteoporosis which are both age related diseases. The age-driven pQTMs also included 11 

associations with dermatopontin (DPT) and seven with beta-2-microglobulin (B2M).  

 

Identification of pQTMs driven by smoking, BMI and diabetes 

Regressing out smoking identified 17 pQTMs, (17 CpG sites and 4 proteins). The leading 

CpG sites were close to the AHRR and F2RL3 genes. Both are known smoking associated 

methylation sites [11, 12]. Polymeric immunoglobulin receptor (PIGR), which we previously 

identified in association with smoking and CpG methylation of AHRR [13], was in eight of the 

pQTMs driven by smoking. Furthermore, pappalysin-1 (PAPPA) was in seven of the pQTMs driven 

by smoking. Regressing out body mass index excluded two additional pQTMs, one between C-

reactive protein (CRP) and cg18181703 at SOCS3, and the second between platelet glycoprotein 

Ib alpha chain (GP1BA) and cg0008629 at ROD1. Both CRP and SOC3 were previously associated 

body mass index [14, 15]. GP1BA is associated with body mass index in KORA (p=6.66x10-6) and 

was also previously linked to atherosclerosis and inflammation in mice [16]. Finally, seven pQTMs 

were eliminated after regressing out diabetes. These seven pQTMs covered three proteins: 



pappalysin-1 (PAPPA; 5 pQTMs), beta-2-microglobulin (B2M, 1 pQTM) and stem cell growth factor-

alpha (CLEC11A; 1 pQTM). Two of the CpG sites in the pQTMs that were driven by T2D 

(cg00851028 and cg16463452) were weakly associated with T2D and HOMA-IR (p=1.38x10-4 and 

0.0435, respectively) in a previous diabetes EWAS [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 3: Details for all connections in the PAPPA network 

 

KORA clinical phenotypes 

Relationship Details 
GABBR1|Alcohol Consumption See Supplementary Data 8 
PAPPA| Alcohol Consumption See Supplementary Data 7 
PAPPA|Metabolic Syndrome See Supplementary Data 7 
PAPPA|Total Cholesterol See Supplementary Data 7 
PAPPA|Triglycerides See Supplementary Data 7 
PAPPA|LDL See Supplementary Data 7 

 

Disease Association (External Studies) 

Relationship Details Reference 
PAPPA|Cardiovascular Disease PAPPA is a strong predictor for adverse 

cardiovascular events in patients with type 
2 diabetes. 

[18] 

PAPPA|Heart Failure High levels of PAPPA have been shown to be 
associated with increased risk of heart 
failure. 

[19] 

PAPPA|Type 2 Diabetes PAPPA also is a strong predictor for adverse 
cardiovascular events in patients with type 
2 diabetes. 

[18] 

PAPPA|Wound Healing PAPPA also has a role in bone formation, 
inflammation, wound healing, and female 
fertility. 

[20] 

PAPPA|Atherosclerosis PAPPA is considered a marker of response 
to injury or diseases such as atherosclerosis 
or lesion progressio 

[21] 

PAPPA|Cancer PAPPA acts as an oncogene, promoting 
tumor cell proliferation, invasion, and 
metastasi 

[22] 

 

 

 

 

 

 



Molecular Association (External Studies)  

Relationship Details Reference 
PRG2|PAPPA In serum from pregnant human, human pro-PRG2 protein 

decreases proteolysis activity of human PAPPA protein. 
[23] 

TNF|PAPPA In primary culture human dermal fibroblasts, actinomycin 
D decreases expression of human PAPPA protein that is 
increased (in a time-dependent and dose-dependent 
manner) by TNF-alpha [TNF] protein. 

[24] 

TNF|ELAVL1 Human INTERFERON GAMMA [IFNG] protein in cell 
culture and human IL1B protein in cell culture and human 
TNF-alpha [TNF] protein in cell culture decrease 
expression of human HUR [ELAVL1] mRNA in Dld 1 cells. 

[25] 

TGFB1|PAPPA TGF-beta1 [TGFB1] is involved in expression of PAPP-A 
mRNA. 

[26] 

PAPPA|ELAVL1 
  

 

Binding of human ELAVL1 protein and human PAPPA 
mRNA occurs. 

[27] 

TGFB1|GABBR1 Transgenic TGF-beta1 [TGFB1] protein is involved in 
expression of mouse Gabbr1 mRNA in kidney from mouse 
exhibiting glomerular disease. 

[28] 

IGF1|TGFB1 In fibroblasts from lung of fetal human, TGFB-1 protein 
increases expression of human IGF1 mRNA. 

[29] 

IGF1|TNF Tumor necrosis factor alpha [TNF] is involved in 
downregulation of Insulin-like growth factor-1 [IGF1]. 

[30] 

GABBR1|TNF In POMC neurons from 16 week-old male mouse, 
homozygous mutant mouse Gabbr1 gene (knockout) 
increases expression of mouse Tnfa [Tnf] mRNA in 
hypothalamus from 16 week-old male mouse that 
involves high fat diet. 

[31] 

PRG2|TNF MBP [PRG2] protein increases release of mouse Tnf alpha 
[Tnf] protein from cultured mast cells from mouse bone 
marrow that involves rat Scgf [Clec11a] protein. 

[32] 

CDC42EP4|TNF In human keratinocytes, human TNF protein increases 
expression of human CDC42EP4 mRNA. 

[33] 

SH3PXD2A|ELAVL1 Binding of human ELAVL1 protein and human SH3PXD2A 
mRNA occurs. 

[27] 

PRDM2|SOD2 Binding of human PRDM2 protein and human SOD2 
protein occurs. 

[34] 

SOD2|TNF TNF increases activity of SOD2.  [35] 
METRNL|IL10 Circulating METRNL protein increases expression of 

mouse IL10 mRNA in mouse subcutaneous white adipose 
tissue.  

[36] 
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IL10|TNF Uncleavable transmembrane form mutant TNF protein 
increases production of mouse IL10 protein in mouse 
tumor derived from 4T1 cells.  

[37] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 4: Details for all connections in the NLRC5 network  

 

KORA clinical phenotypes 

Relationship Details 
NLRC5|LDL See Supplementary Data 8 
NLRC5|HDL See Supplementary Data 8 
NLRC5|Total Cholesterol See Supplementary Data 8 
CD48|LDL See Supplementary Data 7 
CD48|Total Cholesterol See Supplementary Data 7 
CD163|HDL See Supplementary Data 7 
CD163|Hypertension See Supplementary Data 7 
CD163|Triglycerides See Supplementary Data 7 
CD163|Metabolic Syndrome See Supplementary Data 7 
CD163|Body Mass Index See Supplementary Data 7 
CD163|Type 2 Diabetes See Supplementary Data 7 
CXCL10|HDL See Supplementary Data 7 
CXCL10|Hypertension See Supplementary Data 7 
CXCL10|Triglycerides See Supplementary Data 7 
FCGR3B|LDL See Supplementary Data 7 
FCGR3B|Total Cholesterol See Supplementary Data 7 
FCGR3B|Hypertension See Supplementary Data 7 
B2M|LDL See Supplementary Data 7 
B2M|HDL See Supplementary Data 7 
B2M|Total Cholesterol See Supplementary Data 7 
B2M|Hypertension See Supplementary Data 7 
B2M|Body Mass Index See Supplementary Data 7 

 

 

QMDiab Metabolic Associations 

Relationship Details 
NLRC5|neopterin See Supplementary Data 9 
HCP|neopterin See Supplementary Data 9 
PSMB8|neopterin See Supplementary Data 9 
NLRC5|1,3,7-trimethylurate See Supplementary Data 9 
HCP|1,3,7-trimethylurate See Supplementary Data 9 
PSMB8|1,3,7-trimethylurate See Supplementary Data 9 

 

 



Disease Association (External Studies) 

Relationship Details Reference 
NLRC5|Cancer NLRC5 has been suggested as a promising 

entry in tumor immunology. 
[38] [39] 

NLRC5|HIV NLRC5 methylation associates with HIV 
infection. 

[40] 

NLRC5|Cardiovascular Disease NLRC5 methylation associates with circulating 
IL-18 levels which have been associated to 
cardiovascular disease. NLRC5 methylation 
also associates with Soluble Tumor Necrosis 
Factor Receptor 2 (sTNFR2) a marker of 
cardiovascular disease risk in people with 
diabetes. NLRC5 methylation is linked to gene 
expression and inversely associated with the 
risk of incident coronary heart disease. 

[41] [42] 
[43] 

NLRC5|BMI and Obesity NLRC5 methylation was shown to be 
associated with BMI and obesity in Africans. 

[44] 

NLRC5|Lupus NLRC5 methylation associates with lupus. [42] 
NLRC5|Rheumatoid Arthritis NLRC5 methylation associates rheumatoid 

arthritis. 
[45] 

 

 

Other Molecular Association (External Studies)  

 

Relationship Details Reference 
NLRC5|IL6 Interference of mouse Nlrc5 mRNA by siRNA 

increases expression of mouse Il6 mRNA in RAW 
264.7 cells that is increased by 
lipopolysaccharide. 

[46] 

NLRC5|IRF3 NLRC5 ablation reduces MHC class I expression, 
and enhances IKK and IRF3 phosphorylation in 
response to TLR stimulation or viral infection 

[47] 

NLRC5|B2M Human NLRC5 protein increases expression of 
human B2M protein in OSE cells that is increased 
by human RFX5 protein. 

[48] 

NLRC5|IL10 Mouse Nlrc5 protein is necessary for expression 
of mouse Il10 mRNA in RAW 264.7 cells that is 
increased by lipopolysaccharide. 

[46] 
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NLRC5|HLA Human NLRC5 protein increases expression of 
human HLA-A mRNA in EBA cells that is increased 
by human RFXANK isoform b protein. 

[48] 

NLRC5|MHC Class I The expression of MHC class I genes is regulated 
by NLRC5 in coordination with the RFX 
components through an enhanceosome-
dependent manner. 
It has recently been discovered that another 
member of the NLR protein family, NLRC5, 
transcriptionally activates MHC class I genes, and 
thus acts as CITA (MHC class I transactivator), a 
counterpart to CIITA. 

[49, 50] 

PSMB8|IL6 In dendritic cells from human peripheral blood, 
IL-1beta [IL1B] protein and IL6 protein and TNF-
alpha [TNF] protein increase expression of 
human LMP7 [PSMB8] protein. 

[51] 

PSMB8|HLA Repression of human ERAP1 gene by human 
PRDM1 protein and repression of human MECL1 
[PSMB10] gene by human PRDM1 protein and 
repression of human LMP7 [PSMB8] gene by 
human PRDM1 protein and repression of human 
TAPASIN [TAPBP] gene by human PRDM1 protein 
decrease expression of human Hla-abc protein(s) 
in cell surface from Hela cells that is increased by 
IFN gamma [IFNG] protein. 

[52] 

PSMB8|MCH Class I Mutant mouse Psmb8 gene (allele 
Psmb8tm1Hjf/Psmb8tm1Hjf) (knockout 
[homozygous]) in 129P2/OlaHsd mouse 
decreases level of mouse Mhc class I complex in 
cell surface. 

[53] 

PSMB8|NFKB1 Human LMP7 [PSMB8] protein and human LMP2 
[PSMB9] protein are involved in production of 
human p50 [product of NFKB1] protein that is 
mediated by Proteasome [26s Proteasome] 
complex. 

[54] 

NFKB1|IL6 In U937 cells, human IL6 protein increases 
activity of human NF-kappa-B [NFKB1] protein. 

[55] 

NFKB1|IRF3 Binding of immobilized human IRF3 protein and 
p50 [product of NFKB1] protein occurs in a cell-
free system. 

[56] 

NFKB1|IL10 In human mononuclear cells expressing human 
CD14 protein, benzyl adenine and resiquimod 

[57] 
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increase induction of human IL10 protein that 
involves signaling of NF-kB [NFKB1] protein. 

NFKB1|MHC Class I Interference of human IKKA [CHUK] mRNA by 
siRNA decreases binding of a DNA fragment 
containing a NFkB binding site from Mhc Class I 
gene(s) and a protein complex consisting of 
human p50 [product of NFKB1] and of human 
p65 [RELA] in a nuclear extract from Sk Br 3 cells. 

[58] 

NFKB1|B2M Binding of promoter fragment containing a NF-
kappa B response element from human B2M 
gene and a protein-protein complex consisting of 
human p50 [product of NFKB1] and of human C-
Rel [REL] and of human p65 [RELA] and of human 
RELB occurs in a nuclear extracts from MSH cells. 

[59] 

NFKB1|CXCL11 Interference of human NFKB subunit P105/P50 
[NFKB1] mRNA by antisense oligonucleotide 
decreases production of human CXCL11 protein 
in cultured keratinocytes treated with human 
IFNG protein from foreskin of neonatal human 
that is increased by human IL18 protein. 

[60] 

NFKB1|CXCL10 P50 [product of NFKB1] protein increases 
expression of human IP-10 [CXCL10] protein in 
HepG2 cells. 

[61] 

B2M|MHC Class I Binding of human B2M protein and human HLA 
class I [MHC CLASS I] protein(s) occurs in human 
platelets. 

[62] 

B2M|HLA Binding of human B2M protein and human HLA-A 
protein and human HLA-F protein occurs. 

[63] 

B2M|IRF3 IRF3 protein increases transactivation of human 
B2M gene. 

[59] 

B2M|IL6 Beta 2-microglobulin [B2M] increases induction 
of interleukin-6 [IL6] 

[64] 

IL10|FCGR3A/FCGRCB In cell surface from isolated peripheral blood 
monocytes of human, IL10 protein increases 
expression of human CD16 [FCGR3A] protein. 

[65] 

IRF3|LAG3 Mouse Irf3 protein is necessary for expression of 
mouse Lag3 mRNA in conventional dendritic cells 
expressing mouse Cd11b [Itgam] protein from 
mouse lung that is increased by house dust mite 
allergens. 

[66] 

IL6|LAG3 IL-6 is involved in Expression of LAG-3 mRNA. [67] 
IL10|LAG3 L-10 is involved in Expression of LAG-3 mRNA.  

 

  

[67] 
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HLA|LAG3 Mutant mouse Qa-1 [H2-Q1] protein 
(substitution p.D227K) decreases expression of 
mouse Lag3 protein in cell surface from spleen 
effector CD8+ T cells from chronically infected 
Mus (mouse) infected by LCMV Cl 13. 

[68] 

IL10|CXCL11 IL10 protein decreases production of I-TAC 
[CXCL11] protein in neutrophils 2 hours after 
initial treatment that is increased by LPS 
[lipopolysaccharide] and Tnf protein(s). 

[69] 

IRF3|CXCL10 Activation of IRF3 protein by double-stranded 
DNA increases production of CXCL10 protein. 

[70] 

IL6|CXCL10 IL6 protein increases production of human IP-10 
[CXCL10] protein in cultured Homo sapiens 
(human) monocyte-derived macrophages that is 
dependent on phosphorylation of human STAT3 
protein. 

[71] 

IL10|CXCL10 IL10 protein decreases production of IP-10 
[CXCL10] protein 

[72] 

CD163|IL6 The cytokine IL-6 which exerts pro- and anti-
inflammatory effects depending on the signaling 
pathway activated strongly upregulates CD163. 

[73] 

CD163|IL10 CD163 is induced by IL-10 and glucocorticoids 
while proinflammatory cytokines like TNF reduce 
its expression. 

[73] 

IL6|CD48 In ANBL-6 cells, constitutively active mutant n-
Ras protein (unspecified protein mutation) is 
involved in expression of MEM-102 
[CD48] mRNA that involves Il-6 protein. 

[74] 
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