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Abstract

Considering the global issue of vegetable wastes generation and its impact on the environment and resources, this study evalu-
ated the conversion of four largely produced vegetable wastes (cauliflower, cabbage, banana peels and corn cob residues) into
biochar. Each waste was tested individually and as a combined blend to assess feedstock influences on biochar properties.
In addition, various pyrolysis temperatures ranging from 300 °C to 600 °C and two particle size fractions (less than 75 pm,
75-125 um) were considered. Biochars were characterized for various properties that can influence the biochars’ effective-
ness as a soil amendment. It was found that pyrolysis temperature was the most dominant factor on biochar properties, but
that individual feedstocks produced biochars with different characteristics. The biochars had characteristics that varied as
follows: pH 7.2-11.6, ECE 0.15-1.00 mS cm~!, CEC 17—-cmol_ kg~! and {-potential — 0.24 to — 43 mV. Based on optimal
values of these parameters from the literature, cauliflower and banana peels were determined to be the best feedstocks, though
mixed vegetable waste also produced good characteristics. The optimum temperature for pyrolysis was around 400 °C, but
differed slightly (300-500 °C) depending on the distinct feedstock. However, smaller particle size of biochar application
was always optimal. Biochar yields were in the range of 20-30% at this temperature range, except for corn cobs which were
higher. This study demonstrates that pyrolysis of dried vegetable wastes is a suitable waste valorization approach to produce
biochar with good agricultural properties.

Keywords Food waste - Kitchen waste - Pyrolysis - Biochar properties - Soil amendment - Particle size

1 Introduction and background

Food production is paramount to human well-being, and the
global demand for food productivity is expected to grow by
59-98% by 2050 (FAO 2017). Degradation of soil fertility
and nutrient depletion are common threats to agroecosys-
tems and a challenge for modern agricultural practices for
balancing soil fertility factors. Global food production is fur-
ther threatened through water security because of increasing
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population and climate change, requiring improved agricul-
tural water efficiency (Gao et al. 2020). Biochar, a carbon-
rich material produced by pyrolysis of biomass material,
is a suitable soil amendment to provide long-lasting car-
bon enrichment of the soil while enhancing water retention
(Safian et al. 2020); macro- and micro-nutrient retention and
microbial activity of the soil (Pokharel et al. 2020), which
can also aid in nitrogen fixation. Biochar achieves these
benefits due to its highly porous structure, wide range of
functional groups (Lam et al. 2020; Foong et al. 2020), high
negative surface charges and large cation exchange capacity
(CEC) (Bradford and Hsiao 1982).

Biomasses from agricultural wastes are highly suitable
for pyrolysis and biochar production due to their high lig-
nocellulosic content. Pyrolysis is an effective process that
offers agronomic and environmental benefits by reducing
waste biomass volumes by 44-90% (Sait et al. 2012; Sakhiya
et al. 2020). The pyrolysis temperature and the specific feed-
stock employed are the primary factors influencing biochar
yields and characteristics. Characteristics of biochar that
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distinguish its effectiveness as an amendment to improve
soil fertility, water retention capacity and crop productivity
include pH, cation exchange capacity (CEC), organic carbon
content (OC) and nutrients adsorption capacity (Jien and
Wang 2013; Junna et al. 2016; Alotaibi and Schoenau 2019).

Jien and Wang (2013) reported biochar of pH 9.94
and CEC 22.3 cmol, kg™! produced from wood at 700 °C
increases the pH in Paleudults soil from 3.95 to 4.65, CEC
from 7.41 to 9.26 cmol kg~ and saturated hydraulic conduc-
tivity from 16.7 to 30.0 cm h™! after amendment at 2.5%.
Palm tree residue biochar produced at a lower temperature
of 300 °C with pH of 7.67, ECE of 1.22 mS c¢cm~! and CEC
of 9.86 x 1072 meq showed a 3.5% increase in water holding
capacity than biochar produced at 600 °C when added at
50 t ha™! to sand (Alotaibi and Schoenau 2019). For fruit
bunch biochar, optimum water retention in sandy soil was
observed for biochar produced at 400 °C. These aspects
indicate that biochar properties and performance are highly
dependent on feedstock types, pyrolysis temperatures and
soil types. In addition to improving water retention capac-
ity, biochar produced at lower temperature is effective to
improve soil fertility and plant growth. For instance, biochar
produced from three different types of agricultural wastes at
300 °C with pH of 6.93-8.01, ECE of 0.404-3.975 mS cm™!
and CEC of 18.8-50.5 cmol_ kg™' improved the yield of
Suaeda salsa from 11.7% to 115% in saline soil (Junna et al.
2016).

In 2017, it was estimated that 1.3 billion tonnes of food
waste is generated per year globally within the food sup-
ply chain, in which approximately 0.31 kg of food waste is
generated per person daily (FAO 2017). Around 630 million
metric tonnes (MMT) of fruit and vegetables are wasted dur-
ing agricultural production, transportation and packaging,
postharvest handling, distribution/retail activities and by
consumers. Of fruit and vegetable waste, 35% are banana
peels (220 MMT), 8% are cabbage waste (50 MMT), 2% are
caulifiower and brassicas (13 MMT), 15% are potato peels
(94 MMT) and 20% are tomatoes (126 MMT) (Gustavsson
et al. 2011; Sagar et al. 2018). Such fractions can easily be
collected from supermarkets and from kitchen preparation
side waste of canteens and restaurants (Abdelaal et al. 2019).
It is therefore useful to find potential outlets for these waste
fractions. According to the European Union, approximately
143 billion EUR can be recovered by recycling the 88 MMT
of food wastes per year generated in the region (Stenmarck
et al. 2016). While composting and anaerobic digestion are
obvious choices (Al-Rumaihi et al. 2020), biogas is not
always a competitive energy source and biochar provides a
stable, non-odorous soil amendment with lower transporta-
tion costs than composting.

Pyrolysis studies have assessed various types of biomass
feedstock for biochar such as industrial byproducts, animal
wastes, sewage sludge and forest byproducts (Elkhalifa et al.
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2019; Saleem et al. 2019; Reza et al. 2020). However, pyrol-
ysis of vegetable wastes, particularly the largest fractions
mentioned above, has received less attention. Cheng et al.
(2018) undertook pyrolysis of purple cabbage with ZnCl,
activation and acid-leaching processes to create a nitrogen-
doped carbon-based electrocatalyst for oxygen reduction.
The electrocatalyst promoted high oxygen reduction activ-
ity due to high contents of pyridinic- and pyrrolic-nitrogen
inside the prepared carbon material. However, very few
other studies exist. In particular, there is a lack of assessment
of pyrolysis conditions on vegetable wastes and how that
influences characteristics that may benefit agricultural appli-
cations, or how the blend of such wastes, as may be expected
in post-consumer collection from plate or food preparation
waste impacts characteristics. Such wastes are very different
in composition to the non-edible agricultural residues typi-
cally used for pyrolysis and therefore are expected to pro-
duce different characteristics to many other biochars. This
may be in part due to the high moisture content that makes
direct pyrolysis uneconomical. However, in arid areas, solar
drying can be easily implemented. In such cases, appropri-
ate size reduction prior to drying can be highly effective to
enhance surface area. However, excessive size reduction can
be highly energy intensive, particularly with wet biomass.
Therefore, providing one suitable size reduction step that
supports both solar drying and pyrolysis is of benefit.

Thus, a set of objectives was defined to check the pos-
sibility of biochar production from common vegetable and
consumer fruit wastes: raw banana peels, cabbage wastes
and cauliflower wastes. In addition to this, we also selected
to investigate corncobs, since they are significantly different
in composition and also can be commonly collected from
plate waste. Conversion of these four vegetables wastes and
their mixture to biochar under various temperatures was
undertaken to understand how food waste composition and
pyrolysis temperature influence biochar properties. In addi-
tion, as feedstock particle size could influence feedstock dry-
ing and pyrolysis, two particle sizes were also assessed. This
study focuses on a detailed analysis of the biochar properties
of relevance to soil including particle size, CEC, surface
structure, adsorption of nutrients and fraction of organics
which will effect microbial activity, water retention and plant
growth.

2 Materials and methods

2.1 Feedstock preparation

To prepare biochar, cauliflower and cabbage wastes were
collected from a waste bin in the preparation section of a

university canteen in Qatar. A detailed process of biochar
production is demonstrated in Fig. 1. Corn and raw banana
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Fig.1 A detailed process of biochar production from vegetable wastes

were collected from a local supermarket. After collection,
the leaves and cobs of corn, and banana peels were separated
from the edible portion to use as a feedstock. After collec-
tion, the wastes were washed thoroughly with tap water sev-
eral times to remove impurities. Vegetable wastes were then
segregated into different batches and cut into small pieces
(<3 cm). The weight of all batches was measured before and
after drying at 75 °C in a Fisher Scientific Isotemp mechani-
cal convection laboratory oven until completely dry (Mazac
2016).

2.2 Biochar production

Five feedstocks were prepared for pyrolysis under different
conditions. These were each of the four individual dried
food wastes and an equal-weighted mixture of the four
wastes. Pyrolysis was conducted in the absence of oxygen
using a muffle furnace (Lindberg Blue M-3504, Thermo
Scientific) in batch mode at the following temperatures
to assess their influence on biochar yield and properties:
300, 400, 500 and 600 °C (Xue et al. 2019). Fifty grams
of each dried feedstock was pyrolyzed at the four different

Dried mixed

-
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-

Muffle

Pyrolysis
furnace l

(300-600 °C)

pyrolysis

temperature conditions to produce biochar. Samples were
put in a furnace and raised to the defined temperature at
a ramp rate of 5 °C min~! and held at the desired tem-
perature for 15 min. After pyrolysis, the samples were left
inside the furnace to cool down and then weighed to deter-
mine the yield by the equation below:

Weight of biochar (g)
Weight of oven — dried wastes (g)

X 100.
6]

Yield of biochar (%) =

2.3 Grain size analysis

After the yield determination, samples were ground manu-
ally by a stainless steel spice grinder for one to two minutes.
A sieve shaker with sieves ranging from 75 pm to 710 um
was then used to classify the particle size of the resulting
biochar (ASTM 2007). After sieve analysis, two particle
sizes, those passing through 75 um and 125 pm, were con-
sidered to characterize the properties of biochar and to check
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the effective size to apply with soil as an amendment for
plant growth.

2.4 Elemental analysis of biochar

A combustion-type elemental analyzer (EA 3000, Eurovec-
tor) was used to determine carbon (C), nitrogen (N) and
hydrogen (H) content for the two different particle sizes of
biochar. Measurement was taken at a furnace temperature
of 980 °C, with a carrier flow of 121 mL min~'. Before
analysis, biochar samples were oven-dried. Samples ranging
from 0.50 to 1.5 mg were weighed and acetanilide was used
as a reference standard.

2.5 Proximate analysis of biochar

Proximate analysis was conducted to measure volatile mat-
ter, fixed carbon and ash content of biochar followed by
the American Society for Testing and Materials (ASTM)
D7582-15 method (ASTM 2013). The thermal analysis of
the biochars was performed by using an SDT-2960 simul-
taneous DSC-TGA thermal analyzer (TA instruments).
The temperature followed a linear heating ramp at a rate of
5 °C min~! from 40 °C to 105 °C to remove the moisture.
The temperature was held at 105 °C for 7 min and then again
increased at 30 °C min™' from 105 °C to 850 °C with a gas
flow rate of N, and O, 99 mL min~".

Fixed carbon content was calculated by the following
equation:

Fixed carbon(%) = 100% — Ash(%) + Volatile matter(%).
2
After measurement of CHN and ash content, the percent-
age of oxygen content (O) was determined by the following
equation (Zhao et al. 2017):

0% = 100% — (C% + H% + N% + Ash%). 3)

2.6 Analysis of surface area and morphology
of biochar

The Brunauer-Emmett-Teller (BET) surface area of biochar
samples was determined by N, gas sorption analysis at 77 K
between a relative pressure of 0.05-0.35 by using an ASAP
2020 plus surface area analyzer (Micrometrics). The surface
morphology of biochar samples was analyzed with a scan-
ning electron microscope (SEM) (Quanta 650FEG, FEI) fol-
lowing gold sputter coating. Images were taken under high
voltage at an acceleration voltage of 5.00 kV.

@ Springer

2.7 FT-IR analysis

Fourier transform infrared ray (FT-IR) measurement was
taken using 64 scans per sample by a Thermo Scientific
Nicolet iS50 FT-IR spectrometer at a resolution of 4 cm™".
The samples were crushed with KBr in a mortar at a ratio of
1:100, and the pressed pellets were immediately analyzed in
the region of 400—4000 cm™! (Huang et al. 2020).

2.8 XPS analysis

The X-ray photoelectron spectroscopy (XPS) measurements
were taken by a Thermo-Fisher ESCALAB 250X instru-
ment using a monochromatic Ag Ka anode X-ray beam of
1486.6 eV as the XPS excitation source for acquiring all
photoelectron spectra. The curve fitting procedure was per-
formed on the Thermo Advantage software. A 180° hemi-
sphere electron analyzer was used with an overall energy
resolution better than 0.5 eV. The samples were placed with
a beam incident angle of 45° to the surface normal and a
normal emission for data acquisition. All the energy posi-
tions were calibrated with respect to the C—C components in
the Cls spectra locating at 284.8 eV. Data deconvolution was
conducted with a GL30% profile after a Shirley background
subtraction.

2.9 Chemical properties of biochar

Various chemical properties of the biochar such as pH, elec-
trical conductivity (ECE), zeta () potential, cation exchange
capacity (CEC) and phosphorous adsorption (P) were deter-
mined by following different standard procedures. The pH
and electrical conductivity of biochar were measured by
using a calibrated pH meter and conductivity meter (Orion
Star A121 and A329, Thermo Scientific, respectively).

Media and water were mixed at a ratio of 1:5 in a shaker
for 1 h at 150 rpm before measuring pH and ECE (Dai et al.
2013). Surface charge properties given by the {-potential
were measured on Zetasizer Nano-ZS (Malvern) (Zhao et al.
2017; Liu et al. 2020). {-potential was determined in aque-
ous suspension (0.02%, w/v) at pH values ranging from 3
to 14.

Mineral content of the food waste feedstock and biochar
samples were measured by inductively coupled plasma opti-
cal emission spectroscopy (ICP-OES) using an Agilent 5110
ICP-OES that enables synchronous radial and axial measure-
ment. Before analysis, 500 mg of sample was digested with
8 mL nitric acid and 3 mL hydrogen peroxide with a micro-
wave digestion system (Ethos UP, Milestone). Then, 10 mL
HCI was added to the digested samples for complete reflux.
After digestion samples were diluted with deionized water.

The cation exchange capacity (CEC) of biochar was
determined by using ammonium exchange (NH,*), following
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ASTM D7503-10 (2010). The concentration of ammonia
was measured by segmented flow analyzer (Sans+, Skalar).
Phosphorus adsorption is a major property of biochar and
a nutrient for plant growth. Phosphorus adsorption was
measured by preparing a synthetic solution of KH,PO, in
deionized water. Initially, biochar samples were washed by
deionized water and oven-dried at 80 °C to remove any ini-
tial phosphate adsorbed on biochar surface (Lou et al. 2016).
The stock solution of P was prepared using KH,PO, which
contained 4.558 mg L™! of P. Adsorption of P was assessed
using 50 mg of biochar as the adsorbent in 25 mL stock
solution of KH,PO, without adjustment of the pH. Samples
were kept for 24 h to allow equilibrium adsorption capacity
of phosphorous by biochar. After 24 h, the samples were fil-
tered with 0.45 pm polyvinylidene fluoride membrane filters
(Durapore, Merck Millipore Ltd) and the final concentration
of P was estimated using a segmented flow analyzer (San*™,
Skalar, The Netherland). The adsorption capacity of the bio-
char for P was calculated as per the equation given below:

mg of Puptake v
— = — X (Cy — (),

g of biochar m ( o ) @)
where V =volume of KH,PO, solution (L); m=mass of bio-
char (g); C,=initial concentration of P (mg LY, Cy=final
concentration of P (mg L™1).

2,10 Statistical analysis

Statistical analysis of the factors temperature, feedstock
and particle size was conducted using a 3-way independent
ANOVA in the JASP statistical package. Where significant
differences were observed (a=0.05), Tukey’s post hoc test
was utilized for multiple comparisons if Levene’s test was
not significant, or Games—Howell post hoc test if Levene’s
test indicated inequality of variance (indicated in text with
“G-H"). As Games—Howell is not provided for pairwise
interaction comparisons, Tukey’s p value is reported in
these instances regardless of the outcome from Levene’s test.
Effect size was measured using the o’ statistic for ANOVA.

3 Results and discussion
3.1 Biochar yield

The yield of biochar from the five different batches of
feedstocks and four different pyrolysis temperatures of
300-600 °C is shown in Fig. 2. Higher biochar recovery
was observed at lower pyrolysis temperatures for all feed-
stock batches. As the lowest temperature tested was 300 °C,
this demonstrates negligible condensation of aliphatic com-
pounds and less losses of CH,, H, and CO (Brantley et al.
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ture of cauliflower, cabbage, banana and corn wastes

2015). Corn biochar had the maximum yield compared to
other feedstocks at 300 °C (Thangalazhy-Gopakumar et al.
2010), while the other three individual-waste feedstocks had
similar yields at all temperatures. The yields of biochar for
all the feedstocks were reduced with increasing pyrolysis
temperature from 300 °C to 600 °C due to greater losses of
volatile components at the higher pyrolysis temperatures.
Yield of corn wastes biochar was most strongly influenced
by increasing temperature, where its yield at 300 °C was
44.8% and it decreased rapidly between 300 °C and 500 °C
down to 19.8%, similar to the other wastes. The decreas-
ing trend demonstrates the dehydration of hydroxyl groups
and thermal degradation of lignocellulosic structures with
increasing temperature (Thangalazhy-Gopakumar et al.
2010).

3.2 Elemental composition and proximate analysis

Figure 3 represents the variation of elemental composition,
proximate analysis and mineral content of the five feedstocks
and their biochars produced at different pyrolysis temper-
atures. The carbon (C) content of biochar increased with
increasing pyrolysis temperature, whereas the H and O con-
tents decreased (Fig. 3a); however, no particular trend was
observed in nitrogen (N). The highest nitrogen content was
observed in biochar at 400 °C which was attributed to the
incorporation of nitrogen into complex structures that were
resistant to lower temperature and not easily volatilized.
There was a gradual decrease in hydrogen and oxygen at
higher temperature indicated by the lower ratios of O/C and
H/C due to structural transformations and loss of hydrophilic

@ Springer
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surface functional groups. A positive correlation was
observed between O/C and H/C in Fig. 3e which indicates
the degree of C stability. In general, lower hydrogen and
oxygen contents were associated with greater hydrophobic-
ity of the biochar by Hardy et al. (2017). O/C ratio indicates
the polarity and abundance of polar oxygen-containing sur-
face functional groups in biochar and H/C ratio indicates
the aromatic content and stability of the biochar. Pyrolysis
results in condensation of carbon chains at higher tempera-
tures and loss of O and H increases resistance to microbial
degradation in the soil (Kookana et al. 2011). The C con-
centration and the H/C and O/C ratios control the formation
of surface functional groups and have a large influence on
nutrients adsorption. Biochar having a lower H/C ratio has
been correlated with promoting plant growth (Bonanomi
et al. 2017).

From Fig. 3b, it was observed that as the VM decreased
FC and ash content increased with increasing pyrolysis tem-
perature due to the progressive concentration of minerals
and volatilization of organic matter. The decrease in VM
exhibits a similar trend with the biochar yield from 300 °C
to 600 °C (Fig. 2), while an opposite trend was found for the
content of FC. These results confirmed that the increase in
temperature enhanced the stability of biochar for the loss of
volatile fractions and increased FC.

A range of boundary temperatures (100-850 °C) for
separating VM, FC, and ash content are shown in the TGA
profile by the average weight loss of five feedstock biochars
produced at four different temperatures (Fig. 3¢). All bio-
char samples showed a similar thermal degradation profile
with the weight loss proportionally increasing with pyrolysis
temperature, which according to Jindo et al. (2014) could
be mostly associated with the loss of lignocellulosic frac-
tions that did not decompose during the pyrolysis process
and thermal decomposition of minerals and salts from the
biochar.

The increased ash content at high temperature resulted
from progressive concentration of inorganic constituents
that was confirmed by mineral analysis as shown in Fig. 3d.
Some minerals decreased with increasing pyrolysis tem-
perature from 500 °C to 600 °C, which might be due to
volatilization as gas or liquid (Pituello et al. 2015). Thus,
the content of ash decreased in some biochars at tempera-
tures greater than 600 °C. Zn, Cu and Mn concentrations
were relatively similar between the various vegetable waste
biochars, with exception of Mn, which was almost an order
of magnitude higher in corn cob waste biochar. Zn was the
highest in cauliflower and banana waste biochar, while Cu
was generally the highest in corn cob waste, but showed
some variation depending on temperature.

B 300°C Z) 400°C B

8 500°Cc [ 600°C

BET surface area (m’.g")

7 Z

48 7 2
CLF CA BAN COR MIX

Fig.4 BET surface area of biochar produced at different pyrolysis
temperatures. CLF cauliflower wastes, CAB cabbage wastes, BAN
banana peels, COR corn residue, MIX mixture of cauliflower, cab-
bage, banana and corn wastes

3.3 Biochar surface area

The BET surface area of biochar from five batches of feed-
stocks with different temperature conditions is shown in
Fig. 4. Surface area of biochars from different feedstocks
increased with increasing temperature and is exponentially
correlated. BET surface area for corn waste biochar was
similar to that reported by Hale et al. (2013) of 8 m? g~! at
600 °C. Corn waste biochar had the highest BET surface
area of the different vegetable wastes for biochars produced
at 400 °C and above.

The order of surface area was dependent on pyrolysis
temperature indicating the different structures of various
components in the vegetable biomass and their different
volatilization and carbonization with temperature. Although
high surface area can increase soil water holding capacity, its
effects are not as significant as CEC (Wang et al. 2019). For
instance, Piash et al. (2016) proved water hyacinth biochar
with low BET surface area still had a high water holding
capacity of 495+ 11.39% as well as good nutrient retention
ability.

3.4 pH, ECE, CEC and phosphorous adsorption

The pH and conductivity are two properties of biochar that
strongly influence soil fertility. The effect of pyrolysis tem-
perature on these properties for each of the different waste
substrates is shown in Fig. 5 and is significant with strong
effect (p <0.001, ®?>=0.899). The influence of feedstock
was small (p <0.001, w2=0.022) and no significant differ-
ences existed using G—H post hoc tests. The pH values of
all the five batches of biomass were found within a range
of 4.5-6.1. In contrast, the biochar pH from the different
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2016). Jeffery et al. (2017) reported the pH between 6.5
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Temperature showed a more varied impact, with most
feedstocks showing a minimum ECE at 400 °C, with the
exception of cabbage waste (300 °C) and maximum ECE
at either 500 °C or 600 °C. In general, a consistent ECE
response with temperature between the two particle sizes
was observed. Yuan et al. (2011) reported ECE values of
biochar produced from sludge increases with increased
pH and pyrolysis temperature due to the decrease in solu-
ble ions and increased mineral formation. However, Wang
et al. (2019) reported that the ECE of maize straw biochars
decreased with increasing temperature and pH, demonstrat-
ing that ECE may vary with feedstock type and tempera-
ture as seen with this studies’ results. Patriquin et al. (1993)
reported soil microbial activity, water holding capacity and
solubility of nutrients in soil decline with increasing ECE.
Therefore, the most desirable ECE is achieved at 400 °C for
most feedstocks in this study.

Cation exchange capacity (CEC) is an important fac-
tor to measure soil’s ability to hold and exchange nutrients
such as nitrogen, calcium and potassium (Weil and Brady
2017), while its ability to bind with phosphorus, an impor-
tant anionic nutrient, is also crucial. Soil with a lower cat-
ion exchange capacity is not able to retain nutrients and the
nutrients are easily leached under wetting events. Therefore,
application of biochar with high CEC in soil will help to
improve the nutrient assimilation efficiency by the crop
during the growing season and also improve the ability of
the soil to adsorb and retain nutrients from other sources at
non-growing times (Kizito et al. 2019). Different behavior
of CEC was observed for biochar produced from different
feedstocks, particle size and temperature as shown in Fig. 5c.
Each factor was statistically significant (p <0.001) with the
effect of feedstock and temperature being large (w®=0.213
and 0.393, respectively). The CEC was less for 125 um par-
ticle size than 75 pm, although relative patterns between
temperature and feedstock were similar and the differences
small (w*=0.025). The CEC for the biochars of cauliflower,
banana peel and the mixed feedstocks was the greatest at
400 °C (Fig. 5¢), while cabbage waste showed its maxi-
mum CEC at 300 °C and corn cob at 500 °C. Only cabbage
waste showed a consistent trend with temperature, decreas-
ing almost linearly as the temperature increased. All others
showed their minimum at either 300 or 600 °C, with both
temperatures typically producing a low CEC. Mukherjee
etal. (2011) and Lehman et al. (2011) both reported the CEC
of biochars from different feedstocks increase from 250 °C
to 400 °C and then decrease with increasing pyrolysis tem-
peratures and found a minimum at 600 °C. Such behavior is
expected with increasing pyrolysis temperature due to the
oxidation of the carbon compounds and loss of carboxyl
groups in biochar (Luo et al. 2018). There is a confirmation
by Lehman et al. (2011) who reported that much of the CEC
of biochars pyrolyzed at low temperatures may arise due to

the presence of non-carbonized organic matter. However,
Mulabagal et al. (2015) observed in their study an increase
in CEC of biochar with increasing temperature for various
feedstocks up to the maximum tested temperature of 600 °C.
Therefore, the observations of this study seem to fit well
with the general literature.

The highest CEC was from banana peels
(58.2 cmol, kg1, although both corn cob (58.2 cmol,, kg™h
and mixed feedstock (53.2 cmol, kg™') were statistically sim-
ilar, all at 75 pm particle size. At 125 pm size, corn cob gave
the highest CEC value. Although cabbage biochar shows the
minimum CEC, its value is still greater than 20 cmol, kg™!,
meaning it can be effective to hold nutrients and support
plant growth (Mukherjee et al. 2011). Very similar behavior
to CEC was observed for {-potential, with a high degree of
correlation between the two (R*=0.72 for 75 um biochar
and R?=0.69 for 125 pm biochar) as shown in Fig. S1. This
is expected as a higher negative surface charge provides a
stronger attraction to cations. The particle size also played
an important role in the {-potential with the smaller 75 pm
biochar particles showing a relatively more negative surface
charge (p <0.001). Therefore, grinding of the biochar can
be used to develop target surface charge properties that will
influence CEC.

Phosphorous (P) is a finite resource with concerns over
its future supply and availability. Therefore, in addition to
CEC, the ability to hold anionic phosphate is also important.
Maximum phosphorus adsorption was generally a result of
pyrolysis at 400-500 °C, except, like CEC, for cabbage
which showed maximum phosphorus adsorption when pro-
duced at 300 °C (Fig. 5d). The degree of dependence on
temperature, however, was not as noticeable for phosphorus
adsorption as it was for CEC. Overall, a positive correlation
was observed between CEC and phosphorus adsorption by
the biochar produced from different feedstocks, as shown
in Fig. S2, with a pooled feedstock R? of 0.74 for 75 pm
biochar and 0.67 for 125 pm biochar.

3.5 FT-IR analysis

Biochar derived from different feedstocks shows the pres-
ence of aromatic, aliphatic and alcohol compounds with
different behaviors of peak intensity at 400 and 600 °C
compared with biomass (Fig. 6). The bands at about 2700
and 3400 cm™! correspond to aliphatic C-H, O-H and
N-H stretching vibration, illustrated in Table S1. These
are found maximum in biomass and least in biochar pro-
duced at 600 °C (Hossain et al. 2011). The maximum peak
at 3400 cm™! in the biomass decreased with increasing
temperature and less stretching was observed in the bio-
char produced at 600 °C. This bond represents the stretch-
ing vibration of hydroxyl groups and indicates that organic
O-H groups are very unstable at increasing temperatures
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(Hossain et al. 2011; Chen et al. 2012). It is also attributed to
acceleration in dehydration reactions of the biomass (Chen
et al. 2012).

The visible bands at 1250-1420 cm™! in biomass were
assigned to C-O stretching of aromatic ester (Chen et al.
2012) and these bonds were removed by increasing tem-
peratures. This was supported by removal of the peak at
2924-2956 cm™' in biomass with increasing pyrolysis
temperature which is attributed to the presence of alkene
(C-H) groups in carbohydrates (Chun et al. 2004). Aliphatic
stretching vibration reduced as the temperature increased
to 600 °C, possibly due to the breaking of the weak bonds
between the C and the H of the alkyl groups (Chen et al.
2012).

Similarly, the bands in the region of 1250-1800 cm™!
(alkanes and aromatics) also decrease with increase in the
pyrolysis temperature, most notably in the area relating to
polyphenols. The large peak at 1461-1640 cm™! is related
to O—H together with C=C and C=0 in the aromatic ring
that indicated the presence of polyphenols, and also slightly
decreased with increasing temperature (Lin et al. 2007).
These peaks are due to the presence of primary, secondary
and tertiary alcohols, phenols, ethers and esters showing the
C-O0 stretching and O—H deformation vibrations (Chen et al.
2012). The decrease in the intensities of these bands showed
that the surface concentration of the acidic functional groups
has sufficiently decreased. However, there is an alteration in
aromatic structure of biochar samples in comparison with
biomass samples.

The stable peak at 1583 cm™! in biochar represents the
C=C ring stretching vibration of lignin (Chen et al. 2012)
and is more prevalent in biomass. The peaks between 500
and 900 cm™! shown in Fig. 6, corresponding to an aromatic
C-H stretching vibration, indicates the presence of adjacent
aromatic hydrogen in the biochar at 600 °C sample that is
not seen in biomass sample. High peak intensity of the wag-
ging vibrations of C—H bonds of biochar at 400 and 600 °C
indicated the stability of the aromatic and heteroaromatic
compounds and possible cyclization. These results are in
agreement with the observed changes in elemental atomic
ratios which suggest an increase in the carbonization as a
result of cracking and the rebuilding of aromatic rings.

FT-IR analysis indicates the maximum CEC of biochar
at low temperature is due to the presence of various charged
groups. Oxygen (O) containing alcohol, carbonyl and car-
boxylate functional groups are generally believed to con-
tribute to biochar cation exchange capacity (CEC) because
they may carry a negative charge and serve as sorption sites
for cations. Thus, the distribution of O and N containing
functional groups greatly influences the relative hydrophilic/
hydrophobic nature of biochar surfaces.

3.6 XPS analysis

The chemical composition of feedstocks and biochar at 400
and 600 °C was evaluated by XPS shown in Fig. S3. The
results of deconvolution of the Cls spectrum illustrate five
bands at 284.76, 286.35, 287.75, 285.85 and 288.8 eV which
can be assigned to sp® hybridized carbon (C-C), hydroxyl
(C—OH) and carbonyl (C-0), amines (C-N) and carboxyl
(O=C-0OH), respectively (Naderi et al. 2016). The Ols
band of both feedstocks and biochar was deconvoluted into
three primary peaks (Fig. S4), acidic amides (O=C-N) at
531.18 eV; carbonyl oxygen (O=C-0) at 532.66 eV and
O—C-0 at 533.26 eV. Furthermore, the N1s spectrum of
biochar is deconvoluted into two Lorentzian peaks, with
the binding energy of 400.00 and 399.61 eV which can be
attributed to pyrrolic N and pyridinic N, respectively. The
XPS data agree with the findings in FT-IR that indicates a
loss of functional groups and predominance of C—C bond-
ing based on the Cls spectra, particularly a loss of alcohol
and carboxylic acid groups. This is also evidenced in the
O1s spectra where this type of group diminishes, with an
increased predominance of O=C-N, although the makeup
of these functional groups differs significantly between the
different biomasses at 400 and 600 °C. Similarly, in most
samples, an increase in pyridinic N was observed, although
pyrrolic N remained the dominant form.

3.7 SEM analysis of morphology

Figure 7 shows the surface structures of biochars from dif-
ferent feedstocks at two temperature conditions of 400 °C
and 600 °C. Corn waste biochar at 400 °C and mixed feed-
stock biochar contain some holes which may be attributed to
insufficient carbonization. Many small pores are seen in the
biochar due to devolatilization at 600 °C (Luo et al. 2018).
The cracks and pores in the biochars occur due to the release
of volatiles and intermediate-size organics (Luo et al. 2018).
SEM images obtained for biochar produced from different
feedstocks caused substantial changes in the surface mor-
phology and major macroscopic changes were observed for
corn biochar.

3.8 Optimum conditions to biochar as a soil
amendment

It is important to evaluate the results collectively to deter-
mine the most suitable vegetable wastes and pyrolysis con-
ditions for an agriculturally efficient biochar, as well as to
determine whether combined vegetable waste will signifi-
cantly diminish the performance. This is important as com-
bined vegetative waste collection and pyrolysis are signifi-
cantly more simple and economic to implement. The key
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Fig.7 Surface structure by
SEM analysis a—e at 400 °C and
f—j at 600 °C for different bio-
chars, respectively. Images were
taken at 5000 X with horizontal
frame width (HFW) of 82.9 um,
with exception of (c)
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characteristics that influence agricultural performance of a
biochar are pH and CEC. Considering these factors, the bio-
char produced from cauliflower, banana and mixed vegetable
waste at temperature of 400 °C are found to have the most
optimum pH (7.62+0.03) and CEC (37-60 cmol, kg™!) to
enhance plant growth and water retention capacity (Laghari
et al. 2016).

In the literature, studies on biochars produced from waste
vegetables are rare. The study by Lee et al. (2017) is the
most similar study, where mixed food waste was converted
to biochar, including meats, grains, fruits and egg shells in
addition to vegetables (51% by mass). The overall composi-
tion of the biochar was relatively similar, with an optimum
produced at 400 °C, with CEC of 63 cmol, kg_l. One of
the more similar individual materials investigated is orange
peel biochar. Sial et al. (2019) produced such material at
350 °C. The biochar had less favorable properties than
vegetable waste biochar. Although the ECE was similar at
0.29 mS cm™!, it had much higher pH of 10.0. The values for
individual and mixed vegetable waste biochars are also com-
parable and competitive with biochars produced from more
lignocellulose rich materials (Palansooriya et al. 2019). ECE
is generally higher in vegetable waste, which is less desir-
able, but other properties such as cation exchange capacity
and pH are typically improved with regard to target values
for optimum soil improvement.

However, there is a need for further demonstration of
food waste-derived biochars in soil test experiments with
different soils and plants. Mazac (2016) prepared five dif-
ferent batches of mixed food wastes including vegetables,
fruits, leaves and egg shells to produce biochar at a slow
pyrolysis temperature condition of 260 °C for 3 and 6 h and
tested them with tomato plants (Solanum lycopersicum) over
30 days. Similarly, Islam et al. (2019) tested banana peel
biochar produced at 400 °C for 2 h duration and tested it at
1, 2 and 4% loading with Ipomoea aquatica. Although both
experiments observed improved yield with biochar, neither
test showed statistically significant differences.

4 Conclusion

The results of this study demonstrate that pyrolysis of vari-
ous vegetable wastes at temperatures of 300-500 °C pro-
duces biochars with desirable characteristics for agricultural
application. Vegetable waste biochar is therefore a suitable
approach to reduce food waste environmental burdens and
obtain the economic benefits of food waste valorization. This
study demonstrated temperature is a dominant factor with
low temperatures, suitable for slow pyrolysis, favoring opti-
mum biochar characteristics. Particle size had a minor influ-
ence on biochar characteristics, mainly allowing changes
to CEC and C-potential. This is important as it means size

reduction of raw waste can be optimized for energy con-
sumption and handling prior to pyrolysis. The type of veg-
etable waste played an important role in biochar properties
and it was found that mixed vegetable waste performed as
well as the individual vegetable wastes. This confirmation is
advantageous, supporting the combined collection and direct
conversion of mixed vegetable food waste to biochar. While
Keske et al. (2019) have shown biochar application to land
for agriculture can have significant economic benefits, both
soil testing to confirm the performance of vegetable waste
biochar and subsequent economic analysis are necessary in
the future.
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