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Abstract

Purpose Human serine/threonine kinase 4 (STK4) deficiency is a rare, autosomal recessive genetic disorder leading to
combined immunodeficiency; however, the extent to which immune signaling and host defense are impaired is unclear.
We assessed the functional consequences of a novel, homozygous nonsense STK4 mutation (NM_006282.2:¢c.871C>T,
p-Arg291%) identified in a pediatric patient by comparing his innate and adaptive cell-mediated and humoral immune
responses with those of three heterozygous relatives and unrelated controls.

Methods The genetic etiology was verified by whole genome and Sanger sequencing. STK4 gene and protein expression
was measured by quantitative RT-PCR and immunoblotting, respectively. Cellular abnormalities were assessed by high-
throughput RT-RCR, RNA-Seq, ELISA, and flow cytometry. Antibody responses were assessed by ELISA and phage
immunoprecipitation-sequencing.

Results The patient exhibited partial loss of STK4 expression and complete loss of STK4 function combined with recurrent
viral and bacterial infections, notably persistent Epstein—Barr virus viremia and pulmonary tuberculosis. Cellular and molecu-
lar analyses revealed abnormal fractions of T cell subsets, plasmacytoid dendritic cells, and NK cells. The transcriptional
responses of the patient’s whole blood and PBMC samples indicated dysregulated interferon signaling, impaired T cell immu-
nity, and increased T cell apoptosis as well as impaired regulation of cytokine-induced adhesion and leukocyte chemotaxis
genes. Nonetheless, the patient had detectable vaccine-specific antibodies and IgG responses to various pathogens, consistent
with a normal CD19 + B cell fraction, albeit with a distinctive antibody repertoire, largely driven by herpes virus antigens.
Conclusion Patients with STK4 deficiency can exhibit broad impairment of immune function extending beyond lymphoid
cells.

Keywords Human serine/threonine kinase 4 (STK4) deficiency - Combined immunodeficiency - T cell lymphopenia -
Interferon - Antibody repertoire - Transcriptomics
Introduction

Human serine/threonine kinase 4 (STK4) deficiency is a rare
autosomal recessive (AR) genetic disorder leading to com-
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bined immunodeficiency with severe T cell lymphopenia.
This condition is characterized by a predisposition to a wide
range of bacterial and viral infectious diseases, mucocutane-
ous candidiasis, lymphomas, and congenital heart disease
[1]. To date, STK4 deficiency has been reported in rela-
tively few patients; therefore, the extent to which immune
signaling and host defense mechanisms are impaired or
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dysregulated in affected individuals remains incompletely
understood. However, the spectrum of clinical manifesta-
tions associated with STK4 deficiency has been steadily
increasing with each new case report.

STK4 deficiency was first reported by Nehme et al. in
two patients from unrelated Turkish families harboring a
homozygous nonsense mutation in the STK4 gene [2]. The
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patients experienced complications due to recurrent bacterial
and viral infections, most notably persistent Epstein—Barr
virus (EBV) viremia, which ultimately resulted in Hodg-
kin B cell lymphoma. Due to weak expression of the hom-
ing receptors CCR7 and CD62L, the authors attributed the
underlying mechanism of STK4 deficiency to increased
death of naive and proliferating T cells, and impaired
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«Fig. 1 Identification of a homozygous STK4 gene mutation in a
patient from consanguineous parents. A Pedigree and segregation of
the STK4 gene mutation. The patient (P) is homozygous for the muta-
tion. Question marks (?) indicate individuals whose genetic status
could not be evaluated. B Electropherograms of partial sequences of
STK4 corresponding to the mutation in a healthy control (bottom),
patient (up), and a STKAY™ ! relative (middle) representative of
all three healthy family members. The reference vs. altered nucleo-
tide position is indicated by a black arrow. C Schematic illustration
of the protein encoded by the STK4 gene, with domain boundaries
and other features retrieved from the UniProtKB (www.uniprot.org)
(entry Q13043). Blue arrows indicate previously reported variants
[2-5, 9-13, 20]. The variant identified in P is indicated in red. CC,
coiled coil domain; SARAH, Sav/Rassf/Hpo domain (IPR024205). D
Data from the gnomAD database were used to plot minor allele fre-
quency (MAF) against the Combined annotation-dependent depletion
(CADD) score values of all known variants in STK4 and the variant
identified in P. E Western blot analysis of STK4 protein expression in
PBMC-derived T lymphocytes from P, two STK4*Y™! heterozygous
relatives (R1 and R2) and two unrelated STK4"/™, healthy controls
(C1 and C2); a-tubulin and b-actin antibodies were used as controls

homing of CD8™ T cells to secondary lymphoid organs [2].
Abdollahpour et al. reported the cases of three siblings of
Iranian descent with a homozygous premature stop codon
in the STK4 gene [3]. These patients suffered from T and B
cell lymphopenia, intermittent neutropenia, and atrial sep-
tal defects, as well as recurrent bacterial and viral infec-
tions, mucocutaneous candidiasis, cutaneous warts, and
skin abscesses. Interestingly, Schipp et al. reported a Turk-
ish patient with STK4 deficiency who developed a highly
malignant B cell lymphoma at the age of 10 years and a
second, independent Hodgkin lymphoma 5 years later. How-
ever, no detectable EBV or other common virus infection
was detected in this patient. The authors speculated that the
lymphoma may have developed due to the lack of the tumor
suppressive function of STK4 or perturbed immune surveil-
lance due to the diminished CD4* T cell compartment [4]. In
contrast, most malignancies reported in patients with STK4
deficiency are associated with prolonged EBV viremia, ulti-
mately leading to the development of B cell lymphomas [2,
5-T7]. More specifically, patients present with Hodgkin B
cell lymphoma [2], extranodal marginal zone lymphoma of
mucosa-associated lymphoid tissue [8], Burkitt’s lymphoma
[7], or maxillary sinus diffuse large B cell lymphoma [9].
Additional clinical features in patients with STK4 deficiency
include salt-losing tubulopathy, suggestive of an acquired
Gitelman syndrome, immune complex glomerulonephritis,
and Castleman-like disease [10], juvenile idiopathic arthritis
[11], human beta-papillomavirus-associated epidermodys-
plasia verruciformis [11, 12], primary cardiac T cell lym-
phoma [6], and short stature [13].

Studies in mice and humans have shown that STK4
plays a pivotal role in lymphocyte function by regulating
integrin-dependent T lymphocyte trafficking, proliferation,
and differentiation [14, 15]. Of note, the STK4 protein is

broadly expressed in various human hemopoietic cells,
most notably monocytes, and is not restricted to lympho-
cytes (https://www.proteinatlas.org/ENSG00000101109-
STK4). However, its role in T cell-independent functions
is less well understood. Recently, Jgrgensen et al. studied
innate immune signaling in the context of STK4 deficiency
by in vitro stimulation or infection of PBMCs obtained from
an 11-year-old female STK4~/~ patient of a consanguine-
ous Syrian family. These studies revealed defective type 1/
II and III interferon (IFN) responses to a variety of purified
Toll-like receptor (TLR) agonists, live viruses and bacte-
rial lysates due to impaired phosphorylation of the kinase
TBKI1 and the transcription factor IRF3 [13]. The results
also revealed increased apoptosis in STK4-deficient T cells
and neutrophil granulocytes, possibly linked to defective
FOXO signaling in STK4-deficient T cells as shown in ear-
lier studies [2, 3], further supporting the important role of
STK4 in T cell survival.

In this study, we identified an AR STK4 deficiency in
a child from consanguineous parents, which was due to a
novel homozygous stop-gain mutation in a region encod-
ing a coiled-coil domain located downstream of the kinase
domain. We investigated the functional consequences of
the new variant on innate and adaptive cell-mediated and
humoral immune responses.

Results

Clinical Description of the Case and Family Members The
patient was the third child (male) of consanguineous par-
ents (first-degree cousins). The patient had a younger sibling
who was healthy, as were both parents. Of note, the par-
ents reported the death of the patient’s two elder siblings;
one died with a history of chronic headache, coughing, and
lymphoma, while the other died with a history of chronic
coughing (Fig. 1A). However, no detailed medical records
or genetic data were available for the two deceased siblings.

The patient suffered from recurrent skin rashes starting
from infancy, recurrent chest infections since early child-
hood, and an overall failure to thrive with low weight gain
and short stature (data not shown), consistent with previous
reports of other patients with STK4 deficiency [13]. The
patient’s early medical history included a productive cough
of yellow/white mucoid sputum associated with intermittent
fever, which was more common at bedtime; however, early
medical records were very limited and likely to be incom-
plete. After closer clinical monitoring starting at elementary
school age, the patient was diagnosed with bronchiectasis
and asthma, and started on asthma control medication,
including Ventolin. He also experienced complications due
to recurrent viral and bacterial infections, chronic suppura-
tive otitis media, and recurrent pneumonia. The patient was

@ Springer


https://www.proteinatlas.org/ENSG00000101109-STK4
https://www.proteinatlas.org/ENSG00000101109-STK4
http://www.uniprot.org

1842 Journal of Clinical Immunology (2021) 41:1839-1852

5
el 10 sed @ e
o [=} o [=}
o 4 o o o
o0 B B Iy
™ < < < <
o .3 ) =) I
la) 8 10 8 8 8
~ ~ o ~
(@] < 2 < < <
T 10 x © 4
& & & &
E 4 3 £ £
s s S S
o 10 [$} [$] o
0
10
£y £ o £
[=} o o =}
O o o o
< < < <
3 3 2 3
8 2 8 8
b ~ s =
< < < 3
< © < x
& & & &
£ 13 £ £
S S S 3
o o o o

154 402
o 10*3 ©
a 8
(@) 10 .
0 532 8 36.0
3 0%
-0 v ! 3 a5
000 108 10t 108 0° 0 10° 10" 10 0
> CD4
D *
1051
10% 2
~ 3
Al
O o
40° a0 a0 40° — 40 R
a0c 0 100 1wt 10° a0c o 100 10t 10® 1000 100 10t 1d® 000 100 10t 10® 400 10 10 105k
> PD-1
105799 1.32 .82
Lti87 0.046 ooes
3 37T 4T 5 4 5
-10° 0 10 100 10 107 10
» CD45RA
105-26‘7 46.1
[e0)
AN
[m)]
O
33279 108
10 i ; 33199 7.26
| '
40’0 10° 10t 10 1000 100 10t 10° a0 o 100 10t 10
» CD27
G .,
ﬂ 10°7 1051 10°1
o | 10%: 1073 10*3
N
= 3 3 3
a | 10 10
O, 0 0
0° 0% 0%
a0%o 10° a0t 10® a0%o 10° 10t 10° a0 100 10t 1 a0 100 10t 1 a0 10° o a0°
» CD11c
Control Relative 1 Relative 2 Relative 3 Patient

@ Springer



Journal of Clinical Immunology (2021) 41:1839-1852

1843

«Fig.2 Leukocyte subsets in the STK4-deficient patient, his par-
ents and sibling, and one unrelated healthy control. For all experi-
ments, subjects are presented in the following order from left to
right: Unrelated control, the patient’s three relatives, and the patient
(P). A Frequency of B (CD37CD19%) and T (CD3*CDI197) lym-
phocytes among CD45" lymphocytes. B Frequency of T lympho-
cytes (CD3%) and NK cell immunophenotyping, showing the fre-
quency of CD56"" (CD3+*CD56" ) and CD56%™ (CD3*CD56%™)
NK cells among CD45" lymphocytes. C Frequency of cytotoxic
(CD3*CD8*%) and helper (CD3*CD4%) T lymphocytes among
the CD3" lymphocyte subset. D Frequency of PD-1* T lympho-
cytes (CD4"PD-1*) among the CD4% T cell subset. E Frequency
of naive (CD45RA*CCR7"), central memory (CD45RA-CCR7%),
effector memory (CD45RA™CCR77) and effector memory cells
re-expressing CD45RA (Tgyrs) (CD45RAYCCR77) cells among
the CD4* T cell compartment. F Frequency of CD27* and CD28*
T helper subsets within the CD4* compartment. G Frequency
of myeloid dendritic cells (mDCs) (CD123 CDI11c") and plas-
macytoid dendritic cells (pDCs) (CD123*CD11c™) among the
CD45"HLA-DR*CD3~CD14°CD19-, CD20"CD56" dendritic cell
population

also diagnosed with tuberculosis (TB), which was confirmed
by Mycobacteria tuberculosis complex-positive culture,
while the result of a QuantiFERON assay performed in par-
allel was “indeterminate.” The patient was treated for pul-
monary TB for approximately 1 year. However, a year after
stopping treatment, the patient suffered from TB reactivation
and was put on anti-TB medication (cycloserine, linezolid,
moxifloxacin, and pyrazinamide) for a further 2 years. As a
teenager, he also presented with a lower chest infection, and
a chest X-ray confirmed lower left consolidation. A sputum
culture revealed abundant growth of Haemophilus influenzae
and Streptococcus pneumoniae, as well as modest growth of
methicillin-resistant Staphylococcus aureus. About a year
later, the patient was hospitalized with a second episode of
lower chest infection by H. influenzae and multiple-drug-
resistant Klebsiella pneumoniae. EBV viremia was also
detected during the early teenage years and persisted to the
most recent follow-up (Supplementary Table S1). During
his teenage years, the patient also suffered from intermit-
tent neutropenia and severe lymphopenia (Supplementary
Table S2) with markedly decreased naive CD45RA™ cells
(11.1%; normal range 46-77%); the onset may have been
earlier but was not detected due to the late diagnosis. The
patient had received BCG vaccination at birth, as well as
OPV, MMR, varicella, and meningococcal vaccines at
school age. Antibody responses to childhood vaccination
were within the normal range (Supplementary Table S3).

Homozygosity for a Stop-Gain Mutation in the STK4
Gene Whole genome sequencing revealed a rare,
homozygous nonsense mutation in the STK4 gene
(NM_006282.2:c.871C>T, p.Arg291%*) in the patient,
whereas both parents and the younger sibling were identi-
fied as heterozygous carriers, suggesting an AR inheritance

pattern (Fig. 1A). The STK4 genotypes of the patient and his
family members were confirmed by clinical Sanger sequenc-
ing (Fig. 1B). The combined annotation-dependent deple-
tion (CADD) score of the variant was 42, providing further
evidence of its deleteriousness (Fig. 1C and D).

The mutant STK4 Allele is a LOF Variant The mutant STK4
protein was not detected in PBMC-derived T cells from the
patient by Western blot analysis using a monoclonal anti-
body directed against the N-terminus of the protein, whereas
intermediate STK4 protein levels were detected in the par-
ents compared to two unrelated healthy controls (Fig. 1E). A
STK4 transcript was detected by mRNA-Seq and RT-qPCR
in PBMC-derived T cells of the patient, albeit at reduced lev-
els compared to controls with a wild-type genotype and the
heterozygous parents (Supplementary Figure S1A and B).

Reduced Fractions of naive T Helper, and Dendritic Cell
Subsets, as well as Increased Effector Memory and Apop-
totic T Helper and Precursor NK Cells in the PBMCs of the
Patient We performed polychromatic flow cytometric
analyses of PBMCs obtained from the patient at middle-
school-age to compare the lymphocyte subset distribution
with that of his parents, his younger sibling, and one unre-
lated control (Fig. 2). As expected, we found a lower fraction
of T cells in the patient compared to the controls (Fig. 2A,
B and C), which was mainly attributed to selective CD4*
T cell lymphopenia (Fig. 2C). The CD19" B cell popula-
tion was not affected in the patient (11.7% vs. control range
10.9-20.8%) (Fig. 2A). Similarly, the patient’s CD56"CD3~
NK cells were within the normal range (4.59% vs. control
range 1.87-6.82%) (Fig. 2B). However, we noticed a sig-
nificant increase in the CD56"#" NK cell subset in the
patient (1.78% vs. control range 0.058-0.42%) (Fig. 2B). We
then assessed CD4* T cell subsets and found an increase
in programmed death-1 (PD-1)-expressing T helper cells
in the patient (Fig. 2D). Further analysis of PBMC expres-
sion of CD45RA and CCR7 revealed low frequencies of
CD45RA*CCR7* double-positive naive T cells in the
patient, while his CD45RA™CCR7™ effector memory popu-
lation was increased (Fig. 2E). Similarly, the CD277CD28"
T cell subset, which consists mainly of naive T cells, was
also slightly decreased in the patient (Fig. 2F). Finally,
assessment of the dendritic cell (DC) subsets showed a
decrease in the CD11¢~CD123* plasmacytoid DC (pDC)
population in the patient, while his CD11¢*CD123~ myeloid
DCs (mDCs) population remained normal (Fig. 2G).

The Patient has a Distinct Antiviral Antibody Repertoire To
further assess the humoral immunity status of the patient,
we performed large-scale serum antibody profiling by
phage immunoprecipitation-sequencing (PhIP-Seq). The
patient was seropositive for antibodies specific to a variety

@ Springer
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of common viruses and bacteria, including human herpesvi-
ruses (HHV)-4 (EBV), -5 (CMV) and -8; enterovirus (EV)-
B; and human respiratory syncytial virus, human rhinovi-
ruses A and B, S. pneumoniae and S. aureus (Fig. 3A). The
antibody repertoire breadth in the patient was similar to that
of the controls (Fig. 3B). Nevertheless, PCA of the enriched
antibody-antigen interactions showed an overall distinct
antibody repertoire in the patient compared to those of his
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Fig.3 Microbial exposure profile and antiviral antibody repertoire in
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adjusted score values, which served as a quantitative measure of the
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B Bar plot depicting, for each sample shown in A, the number of spe-
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family members and unrelated controls (Fig. 3C). These dif-
ferences were largely driven by antibodies directed against
structural proteins of human herpesviruses (HHV)-4 and -5,
which was consistent with the patient’s active EBV viremia
(Fig. 3D).

Gene Expression Signatures Suggest Dysregulated Inter-
feron Signaling and Impaired T Cell Activation, Inhibition of
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T Cell Proliferation, and Increased T Cell Apoptosis To fur-
ther elucidate the functional consequences of STK4 defi-
ciency at the molecular level, we performed gene expression
analyses using either whole blood (WB) samples or PBMCs
isolated from the patient and control subjects following
in vitro stimulation with a variety of immune activators.
First, we stimulated WB of the patient, his family mem-
bers, and an unrelated control subject with purified pattern
recognition receptor (PRR) agonists (lipopolysaccharides
of Escherichia coli K12 (LPSg,,) (TLR4 agonist), mura-
myl dipeptide (MDP) (NOD2 agonist), Poly(I1:C) (TLR3
agonist), Poly(dA:dT) (multiple-PRR agonist), resiquimod
(R848) (TLR7/8 agonist), cyclic guanosine monophosphate-
adenosine monophosphate (cGAMP) (STING agonist),
and 5’ triphosphate double-stranded RNA (5'ppp-dsRNA)
(RIG-I agonist)), cytokines (IFN-a/IFN-b (an interferon-
o/p receptor IFNAR agonist), IFN-g, IL-1b, and TNF-a),
a potent mitogen (phorbol 12-myristate 13-acetate (PMA)/

Fig.4 Unique gene expression J—

signature in whole blood sam-
ples from the STK4-deficient
patient following in vitro stimu-
lation. Heatmap showing the

Cell differentiation,
proliferation, adhesion and
metabolism

log,-transformed fold change —

values (10g2FC) of the differen-
tially expressed genes (DEGs)
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which transcriptional responses

Cell signaling, ubiquitination,
cell movement, type |
interferons and inflammation

of the patient’s (P) whole blood Erythrocytes, hemoglobin and [

samples to in vitro stimula-

tion showed a variance of
log2FCI> 1 compared to those
of the other family members
(R1, R2, and R3) and an unre-
lated control (C1). Gene-stimuli
pairs are grouped according

to the functional annotation of
the gene cluster as described
previously [16]. Results were
obtained from one experiment.
The target genes represented

60 functionally annotated tran-
scriptional modules (i.e., sets of
co-expressed genes), with each
module represented by three
target genes. Full gene names
and functional annotation are
detailed in Supplementary
Tables S3 and S4
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Inflammation,
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interferons,
inflammation, caspases
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l

ionomycin), and BCR or TCR activators. We measured the
expression of 180 functionally well-annotated target genes
selected a priori from a larger set of genes responsive to
WB stimulation with purified PRR agonists, recombinant
cytokines, and pyogenic bacteria [16] (see “Methods” and
Supplementary Table S5, Online Resource 1); mock stimula-
tions served as controls. Among these target genes, we then
filtered for differentially expressed genes (DEGs) for which
the transcriptional responses of the patient’s WB samples
to any of the in vitro stimulation conditions showed high
variance compared with those of the other family members
and the unrelated control (Supplementary Figure S2). The
identified DEGs were associated with caspases and apop-
tosis, type I and II interferon signaling, inflammation, cell
signaling, and ubiquitination, as well as cell movement and
phagocytosis (Fig. 4 and Supplementary Table S6).
Finally, we performed mRNA-Seq of PBMCs isolated
from the patient and stimulated or not with either IFN-a/
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«Fig.5 Gene enrichment analyses of IFN-a/IFN-b or PMA/ionomy-
cin-responsive genes in PBMCs obtained from the STK4~'~ patient
(P), his STK4WVT/= family members (R1, R2, and R3), and three unre-
lated STK4AY™WT controls (C1, C2, and C3). Results were generated
from one mRNA-Seq experiment. Each condition was assayed in
duplicate. A Heatmap shows functionally grouped GO and KEGG/
BioCarta pathway annotation networks (ClueGO) (P <0.05 (BH cor-
rection); FDR <0.05) that encompass either STK4 (red font), or at
least two genes from the STK4-interacting gene set (black font) (see
Supplementary Figure S3C for a representation of STK4 interaction
partners). Percentage of associated genes shown as a color gradient.
Circle sizes represent the adjusted P-values for the gene enrichment
analyses. B Heatmap shows the log,-transformed fold change values
(log2FC) for genes that are part of selected gene networks shown in
A. Upregulation and downregulation of genes is shown as a red and
blue gradient, respectively. Genes that are part of the human interfer-
ome network [19] are labeled in green font; STK4 is labeled in blue
font. C Analysis of regulatory effects (IPA) of IFN-a/IFN-b-respon-
sive genes that are dysregulated in the patient’s PBMCs (P <0.05
(Fishers exact t-test); z-score>2; consistency score 18.98). The top
panel of nodes in the network graph depicts the predicted upstream
regulators; the middle panel depicts the selected gene set, and the bot-
tom panel depicts the best matching downstream effect. Solid cyan
edges depict indirect relationships between nodes of the network and
STK4 (Ingenuity Knowledge Base, Qiagen). D Scatter plot shows the
log2FC values of the analyzed genes in the patient versus the mean
FC values of the unrelated controls after stimulation with IFN-a/
IFN-b. Orange symbols indicate responsive genes for which regula-
tion was considered different in the patient compared to the controls
(ratio <0 or>2). Genes that form part of the regulatory network in C
are annotated. E Heatmap shows the results of a canonical pathway
comparison analysis (IPA). The color gradient depicts z-score values.
Pathways with P <0.05 and z-score >?2 were considered significantly
regulated. Red and blue indicate activated and repressed pathways,
respectively. Only canonical pathways that were found to be differen-
tially activated/repressed in the patient relative to the control subjects
are shown

IFN-b or PMA/ionomycin. Both parents and three unrelated,
healthy controls were assessed for comparison. We filtered
for genes responsive to in vitro stimulation among the unre-
lated control subjects and found a marked dysregulation, but
not complete abrogation, of IFN-regulated gene expression
in the patient (Supplementary Figure S3A and S3B). After
an additional filtering step (see Methods, Online Resource
1), we performed gene enrichment analyses on the subsets
of either IFN-a/IFN-b- or PMA/ionomycin-responsive DEGs
that were dysregulated in the patient using ClueGO [17]
and Cytoscape [18], thereby taking advantage of function-
ally grouped GO and KEGG/BioCarta pathway annotation
networks. To gain a better mechanistic understanding of the
molecular consequences of STK4 deficiency, we focused our
analyses on gene networks that either encompass STK4 or
that include genes encoding products that interact directly
with the STK4 protein (Supplementary Figure S3C). This
analysis revealed several gene networks involved in the regu-
lation of cell adhesion and leukocyte chemotaxis encompass-
ing STK4, as well as gene networks involved in IFN-a/IFN-
b- or mitogen-induced regulation of gene expression and
biosynthesis processes that are typically associated with cell

chemotaxis and adhesion-mediated cell signaling (Fig. SA).
Several of the genes that belong to these GO and pathway
annotation networks are also previously reported type I
interferon-responsive genes [19] (Fig. 5B). We also assessed
regulatory effects on the subsets of IFN-a/I[FN-b- or PMA/
ionomycin-responsive DEGs using IPA and examined which
genes or their upstream regulators are known to bind to, or
are regulated by, STK4. This analysis revealed two regula-
tory networks of IFN-a/I[FN-b-responsive genes encompass-
ing several cytokine-, chemokine-, and adhesion factor- or
receptor genes that are indirectly regulated by STK4, which
was consistent with our ClueGO analysis. These genes are
also involved in cytotoxicity and death of immune cells, as
well as adhesion and migration of lymphocytes and mono-
nuclear leukocytes (Fig. 5C, D, Supplementary Figure S3D-
E). However, no regulatory effects networks were identified
among PMA/ionomycin-responsive genes through the use
of IPA (data not shown). Finally, we performed a canoni-
cal pathway comparison analysis of the entire sets of either
IFN-a/IFN-b- or PMA/ionomycin-responsive genes using
IPA to identify pathways that are differentially activated
or inhibited in the patient’s cells compared to those of the
controls. In response to IFNAR activation, nine pathways
were differentially regulated in the patient compared to the
controls, most of which are linked to T cell signaling and
apoptosis, cell proliferation, oxidative stress, and, interest-
ingly, IL-23 signaling (Fig. SE). Similarly, we observed sev-
eral pathways that are normally repressed following mitogen
activation, but instead were highly activated or dysregulated
in the patient’s cells. These included pathways primarily
involved in T cell effector functions, T and B cell activa-
tion, cell cycle arrest, and apoptosis (Fig. SE).

Given the apparent dysregulation of IL.-23 signaling in the
patient’s cells, we also examined absolute IL-23 and IFNG
gene expression, either at baseline or following stimulation
with either PMA/ionomycin or IFN-a/IFN-b. In comparison
to the control subjects, IL-23 gene expression in the patient
was highly impaired at baseline and largely unresponsive to
PMA/ionomycin stimulation, whereas IFNG gene expres-
sion appeared normal (Supplementary Figure S1C and D).

Discussion

In this study, we identified a novel stop-gain mutation in a
patient with AR complete STK4 deficiency. This mutation
was found to be located in a genomic region that encodes
the coiled-coil domain of STK4, downstream of its protein
kinase domain. We were unable to detect even a truncated
STK4 protein in the patient using a monoclonal antibody
to the N-terminal region of STK4, suggesting that protein
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expression of the mutated allele is completely abrogated due
to nonsense-mediated decay.

In accordance with earlier case reports [5, 8, 20], we
found that the PBMC:s isolated from our patient had reduced
fractions of CD4" naive, but increased effector memory, T
helper cell subsets compared with those in the STK4""mu!
family members and an unrelated STK4"”*' control. Further-
more, flow cytometric analysis showed a considerable pro-
portion of the remaining T helper cell subset in the patient
expressed higher levels of PD-1, and our RNA-Seq analyses
revealed dysregulation of several pathways in the patient,
suggesting elevated T cell exhaustion and impaired effector
functions of the residual T cells. Whether this is a conse-
quence of persistent EBV viremia [21-23] or an intrinsic
feature of STK4 deficiency, or perhaps both, remains to be
established. Previous studies have shown that EBV reactiva-
tion correlates with the expression of PD-1/PD-L1 antigens
in patients with proliferative glomerulonephritis [24]. On the
other hand, CD4* T cell lymphopenia has also been reported
in STK4-deficient patients in the absence of detectable EBV
infection [4]. In addition, the patient presented with episodes
of intermittent neutropenia, which is consistent with previ-
ous observations [2, 3, 6, 9, 13].

Our results also highlight that STK4 deficiency can lead
to the impairment of a variety of T cell-independent and
innate immune responses. Indeed, we detected a consider-
able proportion of CD56*¢" NK cells in the PBMCs iso-
lated from the patient. While these cells constitute only a
small fraction of NK cells in the peripheral blood of healthy
individuals, they represent the majority of NK cells in sec-
ondary lymphoid tissues. CD56#" NK cells are thought
to be NK cell precursors [25] and may have immunoregula-
tory properties [26]. We also observed a decreased fraction
of pDCs in the patient’s peripheral blood. Whether this is
an indirect consequence of active EBV infection, as shown
in mouse studies [27], or whether low levels of pDCs con-
tribute directly to a lack of EBV control, remains unclear.
As reported by Jgrgensen et al. [13], we also observed dys-
regulated type I and II IFN signaling in the patient’s cells.
Interestingly, transcriptomic analysis of the patient’s PBMCs
in response to IFNAR activation in vitro revealed a marked
dysregulation of IFN-regulated gene expression, affecting
interferon-stimulated genes (ISGs). Our enrichment analy-
ses of either IFN-a/IFN-b- or PMA/ionomycin-responsive
genes that showed differential expression between the
patient and controls revealed several gene networks remi-
niscent of dysregulated cytokine-stimulated cell adhesion,
leukocyte chemotaxis, and impaired T cell activation, likely
resulting in T cell exhaustion and enhanced immune cell
death. Dysregulation of these proinflammatory cytokines
and chemokines has also been implicated in cancer patho-
genesis [28]. Moreover, in accordance with our findings,
Dang et al. demonstrated that leukocytes of patients with
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AR STK4 deficiency exhibited impaired chemotaxis after
stimulation with CXCL11 and did not bind to ICAM-1 [5].

It cannot be ruled out that the dysregulated type I IFN-
induced gene expression signature in the patient’s PBMCs
is, in part, also a consequence of abnormal proportions of
some leukocyte subsets. Indeed, we observed decreased frac-
tions of pDCs, which are potent producers of type I [FN
under in vitro and in vivo conditions [29]. Nonetheless, the
short duration of the in vitro stimulation and gene expres-
sion experiments (2 h) and the low proportions of pDCs,
CD56"#M NK cells, and effector memory T cell subsets
relative to the total PBMC population make it less likely
that abnormal proportions of some leukocytes subsets in the
patient have a major effect on their PBMC transcriptome.
Overall, the suboptimal IFN signaling may contribute to the
T cell immunodeficiency and the vulnerability of STK4-
deficient patients to viral infection and cancer development.
However, overall fractions of CD19* B cells (Fig. 2A) and
IgG antibody responses to childhood vaccination (Supple-
mentary Table S3) or common microbial infection (Fig. 3)
did not appear to be diminished in our patient, apart from
our observation that the antibodies were predominantly spe-
cific for HHV-4 and -5 antigens. Of note, a recent study in
STK4~'~ mice and nine patients from five unrelated families
with STK4 deficiency suggested that STK4 is required for
normal humoral immunity since knockout mice and patients
had reduced marginal zone B (MZB) cells as well as reduced
numbers of innate-like B-1b cell subsets, while the over-
all fractions of circulating CD19* B cells were normal, as
in our patient [30]. This raises the possibility that patients
with STK4 deficiency may also have a selective impairment
in the ability to mount robust T cell-independent, polysac-
charide-specific antibody responses to control natural infec-
tion with encapsulated bacteria, such as H. influenzae, K.
pneumoniae and S. pneumoniae, which is consistent with
the clinical history of our patient. Polysaccharide-specific
antibody responses (or the lack of) are undetectable using
the PhIP-Seq assay as it exclusively detects antibodies that
target protein antigens and is limited in its capacity to detect
conformational and post-translationally modified epitopes
[31]. High efficacy of plain polysaccharide-based vaccines
also depends on the maturation of MZB cells, which usu-
ally does not occur until the second year of life [32]. In our
patient, the specific antibody responses were at the lower end
of our laboratory reference range (Supplementary Table S3).
However, anti-pneumococcal polysaccharide antibodies
cannot be used as definitive markers of MZB cell-mediated
immunity due to the introduction of the conjugate pneumo-
coccal vaccine into the local routine immunization sched-
ule. The literature shows variability in the specific antibody
responses in STK4-deficient patients, ranging from normal
to absent [30]. The history of infection with H. influenzae,
K. pneumonia, and S. pneumoniae in our patient could have
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also interfered with the utility and interpretation of tests
of responses to plain polysaccharide vaccines. Therefore,
humoral immunity of patients with STK4 deficiency toward
encapsulated bacteria requires further investigation.

We also demonstrated a profound impairment of /L-23
gene expression in the patient’s PBMCs, both at baseline
and following in vitro stimulation. IL-23 is produced by
innate lymphoid cells, gamma-delta T cells, DCs, and mac-
rophages, and it has been shown that /L-23-dependent IFN-
immunity plays a pivotal role in controlling Mycobacterium
tuberculosis (Mtb) infection [33]. It is therefore tempting to
speculate that impaired /L-23 gene expression contributed to
patient’s susceptibility to pulmonary TB. Despite the clinical
evidence of pulmonary TB, the patient’s QuantiFERON test
result was indeterminate, which is likely to reflect a combi-
nation of cellular dysfunction and profound lymphopenia. Of
note, Radwan et al. [7] also speculated that complications
in a 9-year-old Egyptian boy with STK4 deficiency were
associated with mycobacterial infection, although tuberculin
skin-test results were negative, and the results from Quan-
tiFERON tests were inconclusive.

It remains unclear whether malignancies in STK4-defi-
cient patients are a secondary consequence of persistent
EBYV viremia, or whether such patients are inherently prone
to malignancies due to dysregulation of oncogenes, even in
the absence of EBV infection [4]. Interestingly, our RNA-
Seq experiments revealed upregulation of mitogen-induced
B cell-activating factor (BAFF) receptor gene (TNFRSF13C)
expression in the patient, suggesting activation of BAFF
signaling, in contrast to the controls where this pathway was
inhibited following PMA/ionomycin stimulation (Fig. 5 and
Supplementary Table S4). Studies in vitro and in mice have
shown that EBV drives autonomous B cell proliferation [34],
which also depends on T cell-independent survival signals
provided by the BAFF receptor. Excessive BAFF levels have
been implicated in several B-lineage malignancies [35-38],
which have also been reported in the context of STK4 defi-
ciency, with or without EBV viremia [2, 5-8, 10]. Our obser-
vations provide further mechanistic insights into the suscep-
tibility of STK4-deficient patients to malignancies, although
they do not allow firm conclusions to be drawn about the
role of EBV in this process. Nonetheless, it is tempting to
speculate that STK4-deficient patients, particularly those
with persistent EBV viremia, may benefit from treatment
with immune checkpoint inhibitors. Using a humanized
mouse model, Ma et al. [39] demonstrated a direct beneficial
effect of PD-1/CTLA-4 blockade mediated by monoclonal
antibodies against PD-1 or CTLA-4 alone, or in combina-
tion, on EBV-associated B cell lymphomas, thereby provid-
ing further evidence in support of this hypothesis. However,
TB reactivation or primary Mtb infections have also been
reported in cancer patients who received checkpoint inhibi-
tors [40—42]. Therefore, the potential therapeutic benefits

of checkpoint inhibitors in patients with STK4 deficiency
require further investigation.

Methods

Detailed methods are provided in the Online Resources
(Online Resource 1).

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10875-021-01115-2.
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