Manara - Qatar Research Repository
Browse

The SREBP-Dependent Regulation of Cyclin D1 Links Lipid Metabolism to Cell Proliferation

Download (2.13 MB)
thesis
submitted on 2024-10-28, 07:38 and posted on 2024-11-04, 09:08 authored by Arwa A. H. Aldaalis
The sterol regulatory-element binding protein (SREBP) family of transcription factors regulates cholesterol, fatty acid, and triglyceride synthesis and metabolism. However, they are also targeted by the ubiquitin ligase Fbw7, a major tumor suppressor, suggesting that they could regulate cell growth. Indeed, enhanced lipid synthesis is a hallmark of many human tumors. Thus, the SREBP pathway has recently emerged as a potential target for cancer therapy. We have previously demonstrated that one of these transcription factors, SREBP1, is stabilized and remains associated with target promoters during mitosis, suggesting that the expression of these target genes could be important as cells enter G1 and transcription is restored. Activation of cyclin D-CDK4/6 complexes is critical for the phosphorylation and inactivation of the retinoblastoma protein (Rb) family of transcriptional repressors and progression through the G1 phase of the cell cycle. Importantly, the cyclin D-CDK4/6-Rb regulatory axis is frequently dysregulated in human cancer. In the current work, we demonstrate that SREBP1 activates the expression of cyclin D1, a coactivator of CDK4 and CDK6, by binding to an E-box in the cyclin D1 promoter. Consequently, inactivation of SREBP1 in human liver and breast cancer cell lines reduces the expression of cyclin D1 and attenuates Rb phosphorylation. Rb phosphorylation in these cells can be rescued by restoring cyclin D1 expression. On the other hand, expression of active SREBP1 induced the expression of cyclin D1 and increased the phosphorylation of Rb in a manner dependent on cyclin D1 and CDK4/6 activity. Inactivation of SREBP1 resulted in reduced expression of cyclin D1, attenuated phosphorylation of Rb, and reduced proliferation. Inactivation of SREBP1 also reduced the insulin-dependent regulation of the cyclin D1 gene. At the same time, SREBP1 is known to play an important role in supporting lipid synthesis in cancer cells. Thus, we propose that the SREBP1-dependent regulation of cyclin D1 coordinates cell proliferation with the enhanced lipid synthesis required to support cell growth.

History

Language

  • English

Publication Year

  • 2022

License statement

© The author. The author has granted HBKU and Qatar Foundation a non-exclusive, worldwide, perpetual, irrevocable, royalty-free license to reproduce, display and distribute the manuscript in whole or in part in any form to be posted in digital or print format and made available to the public at no charge. Unless otherwise specified in the copyright statement or the metadata, all rights are reserved by the copyright holder. For permission to reuse content, please contact the author.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Health and Life Sciences - HBKU

Degree Date

  • 2022

Degree Type

  • Doctorate

Advisors

Johan Ericsson

Committee Members

Khaled Machaca ; Henning Horn ; Omar Khan ; Fadel Tissir ; Hani Najafi-Shoushtari

Department/Program

College of Health and Life Sciences

Usage metrics

    College of Health and Life Sciences - HBKU

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC