Manara - Qatar Research Repository
Browse

Adaptive ResNet Architecture for Distributed Inference in Resource-Constrained IoT Systems

Download (3.49 MB)
thesis
submitted on 2024-10-29, 07:17 and posted on 2024-10-30, 09:15 authored by Fazeela Mazhar
As deep neural networks continue to expand and become more complex, most edge devices are unable to handle their extensive processing requirements. Therefore, the concept of distributed inference is essential to distribute the neural network among a cluster of nodes. However, distribution may lead to additional energy consumption and dependency among devices that suffer from unstable transmission rates. Unstable transmission rates harm real-time performance of IoT devices causing high latency, high energy usage, and potential failures. Hence, for dynamic systems, it is necessary to have a resilient DNN with an adaptive architecture that can downsize as per the available resources. This thesis presents an empirical study that identifies the connections in ResNet that can be dropped without significantly impacting the model’s performance to enable distribution in case of resource shortage. Based on the results, a multi-objective optimization problem is formulated to minimize latency and maximize accuracy as per available resources. Our experiments demonstrate that an adaptive ResNet architecture can reduce shared data, energy consumption, and latency throughout the distribution while maintaining high accuracy.

History

Language

  • English

Publication Year

  • 2023

License statement

© The author. The author has granted HBKU and Qatar Foundation a non-exclusive, worldwide, perpetual, irrevocable, royalty-free license to reproduce, display and distribute the manuscript in whole or in part in any form to be posted in digital or print format and made available to the public at no charge. Unless otherwise specified in the copyright statement or the metadata, all rights are reserved by the copyright holder. For permission to reuse content, please contact the author.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Degree Date

  • 2023

Degree Type

  • Master's

Advisors

Aiman Erbad

Committee Members

Muammer Koc ; Jens Schneider ; Brahim Belhaouari Samir

Department/Program

College of Science & Engineering

Usage metrics

    College of Science and Engineering - HBKU

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC