Manara - Qatar Research Repository
2 files

White Graphene-Cobalt Oxide Hybrid Filler Reinforced Polystyrene Nanofibers for Selective Oil Absorption

journal contribution
submitted on 2024-03-05, 07:55 and posted on 2024-03-05, 07:56 authored by Deepalekshmi Ponnamma, Sabari S Nair, Hemalatha Parangusan, Mohammad K. Hassan, Samer Adham, Alamgir Karim, Mariam Al Ali Al-Maadeed

In this work, stable hydrophobic nanocomposites are made from electrospun fibers of polystyrene (PS) containing a hybrid filler combination of (i) hexagonal boron nitride (hBN) and (ii) cobalt oxide (Co3O4) nanomaterials. Good synergistic interaction is observed between the nanomaterials, since the growth of Co3O4 was carried out in presence of white graphene nanosheets. Filler synergy modifies the PS surfaces, by enhancing the filler-polymer interfacial interactions and provides good tensile strength. The hydrophobic films are gamma irradiated to improve crosslinking within the polymer nanocomposites. Since gamma irradiation enhances the surface roughness, its hydrophobicity/oleophilicity increases much and the final nanofibers show good oil-water separation efficiency. The nanofibers act as sponge clothing to skim the oil from a mixture of oil and water. Durability of the fibers in hot water and in presence of ultrasonic waves is also tested and good response is achieved. Contact angle studies are performed to investigate the surface properties and to check the influence of gamma irradiation on the surface wettability. The gamma-irradiated PS nanocomposite fiber shows a contact angle of 152° ± 2° compared to the 140° ± 1° of the neat PS fiber, evidencing the superhydrophobicity. Both the effects of crosslink density enhancement and hybrid filler distribution make the composite fibers stronger in oil absorption application even at higher operation temperatures. The fibers are reported to be robust and durable, in addition.

Other Information

Published in: Polymers
See article on publisher's website:


Open Access funding provided by the Qatar National Library.



  • English



Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU
  • ConocoPhillips Water Technology Ltd QSTP-B

Usage metrics

    Qatar University



    Ref. manager