Wearable wrist to finger photoplethysmogram translation through restoration using super operational neural networks based 1D-CycleGAN for enhancing cardiovascular monitoring
Background and Motivations
Physiological signals, such as the Photoplethysmogram (PPG) collected through wearable devices, consistently encounter significant motion artifacts. Current signal processing techniques, and even state-of-the-art machine learning algorithms, frequently struggle to effectively restore the inherent bodily signals amidst the array of randomly generated distortions. This often leads to the modification or even the degradation of the underlying physiological information.
Methods
To enhance heart rate estimation from wrist PPG (wPPG) signals, this study introduces the Translation Through Restoration GAN (TTR-GAN). TTR-GAN comprises cascaded dual-stage 1D Cycle Generative Adversarial Networks (1D-CycleGANs) constructed using Super-ONNs. In the first phase, corrupted wPPG waveforms are blindly restored using a 1D-CycleGAN-based restoration framework. Subsequently, in the second phase, the restored wPPG waveforms are translated into clean finger PPG (fPPG) signals through a 1D-CycleGAN-based signal-to-signal translation or synthesis framework. Both the restorer and translator GANs undergo independent evaluation using robust temporal, spectral, and clinical metrics.
Results
The application of the multipass restoration scheme to the wPPG signals resulted in significantly lower entropy compared to the raw wPPGs, indicating reduced irregularity. Using the proposed PRTX metric to evaluate the translational ability of the multichannel translator CycleGAN, we achieved a substantial improvement of 35.88% in wrist-to-finger PPG translation. The correlation between the pulse rate and pulse rate variations estimated from the generated fPPG signals and the heart rate and heart rate variability readings from the ground truth ECG improved by approximately 10.4% and 14.7%, respectively, when compared to the raw wPPG signals.
Conclusion
The proposed TTR-GAN can be implemented in wearable devices to obtain reliable real-time cardiovascular data during daily activities.
Other Information
Published in: Expert Systems with Applications
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.eswa.2024.123167
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
ElsevierPublication Year
- 2024
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- College of Engineering - QU