Manara - Qatar Research Repository
Browse
1/1
2 files

Vitamin D3 metabolite ratio as an indicator of vitamin D status and its association with diabetes complications

journal contribution
submitted on 2024-05-15, 10:55 and posted on 2024-05-15, 10:56 authored by Lina H. M. Ahmed, Alexandra E. Butler, Soha R. Dargham, Aishah Latif, Omar M. Chidiac, Stephen L. Atkin, Charbel Abi Khalil

Background

Vitamin D deficiency is diagnosed by total serum 25-hydroxyvitamin D (25(OH)D) concentration and is associated with poor health and increased mortality; however, some populations have low 25(OH) D concentrations without manifestations of vitamin D deficiency. The Vitamin D Metabolite Ratio (VMR) has been suggested as a superior indicator of vitamin D status. Therefore, VMR was determined in a population with type 2 diabetes at high risk for vitamin D deficiency and correlated with diabetic complications.

Research design and methods

Four hundred sisty patients with type 2 diabetes (T2D) were recruited, all were vitamin D3 supplement naive. Plasma concentration of 25-hydroxyvitamin D3 (25(OH)D3) and its metabolites 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and its epimer, 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3), were measured by LC-MS/MS analysis. VMR-1 was calculated as a ratio of 24,25(OH)2D3:25(OH)D3; VMR-2 as a ratio of 1,25(OH)2D3:25(OH)D3; VMR-3 was calculated as a ratio of 3-epi-25(OH)D3: 25(OH)D3.

Results

An association means that there were significant differences between the ratios found for those with versus those without the various diabetic complications studied. VMR-1 was associated with diabetic retinopathy (p = 0.001) and peripheral artery disease (p = 0.012); VMR-2 associated with hypertension (p < 0.001), dyslipidemia (p < 0.001), diabetic retinopathy (p < 0.001), diabetic neuropathy (p < 0.001), coronary artery disease (p = 0.001) and stroke (p < 0.05). VMR-3 associated with hypertension (p < 0.05), dyslipidemia (p < 0.001) and coronary artery disease (p < 0.05).

Conclusions

In this cross sectional study, whilst not causal, VMR-2 was shown to be the superior predictor of diabetic and cardiovascular complications though not demonstrative of causality in this cross-sectional study population over VMR-1, VMR-3 and the individual vitamin D concentration measurements; VMR-2 associated with both microvascular and cardiovascular indices and therefore may have utility in predicting the development of diabetic complications.

Other Information

Published in: BMC Endocrine Disorders
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1186/s12902-020-00641-1

Funding

Qatar National Research Fund (NPRP9–169–3-024), Modeling vascular complications of type 2 diabetes using in vitro derived endothelial-cardiomyocytes.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Biomedical Research Institute - HBKU
  • Diabetes Research Center - QBRI
  • Weill Cornell Medicine - Qatar
  • Anti-Doping Laboratory Qatar

Methodology

Four hundred sisty patients with type 2 diabetes (T2D) were recruited, all were vitamin D3 supplement naive. Plasma concentration of 25-hydroxyvitamin D3 (25(OH)D3) and its metabolites 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and its epimer, 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3), were measured by LC-MS/MS analysis. VMR-1 was calculated as a ratio of 24,25(OH)2D3:25(OH)D3; VMR-2 as a ratio of 1,25(OH)2D3:25(OH)D3; VMR-3 was calculated as a ratio of 3-epi-25(OH)D3: 25(OH)D3.

Usage metrics

    Qatar Biomedical Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC