Manara - Qatar Research Repository
Browse

Utilization of Electric Vehicle Grid Integration System for Power Grid Ancillary Services

Download (5.38 MB)
journal contribution
submitted on 2024-09-03, 06:08 and posted on 2024-09-03, 06:09 authored by Himadry Das, Md Nurunnabi, Mohamed Salem, Shuhui Li, Mohammad Rahman

Electric vehicle grid integration (EVGI) is one of the most important parts of transportation electrification. However, large-scale EV charging/discharging can have an adverse effect on the distribution grid, due to a large amount of load being drawn from or fed back to the power grid. Additionally, the power electronics used in the grid interaction may impose additional complications, such as voltage and frequency deviation, harmonic distortion, etc. With proper control scheme designs for the grid-connected inverters, such complications can be mitigated, and several grid ancillary services, such as voltage and frequency support, reactive power support, and harmonic mitigation, can be facilitated from large-scale EVGI. In this study, a large-scale EVGI system is developed where the vector control implementation of a grid-connected inverter in the d-q reference frame is presented for providing different grid ancillary services using the EVGI system. The EVGI system is operated in different control modes to ensure multiple ancillary services of the power grid. The study is supported by the electromagnetic transient simulation performed in Matlab/Simulink of a large-scale EVGI system. The simulation shows that with the proper control mechanism of grid-connected inverters, EVGI can be used to provide several useful grid ancillary services.

Other Information

Published in: Energies
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/en15228623

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC