Manara - Qatar Research Repository
Browse

Towards green membranes: Repurposing waste polypropylene with a single plant-based solvent via tandem spin-casting and annealing

Download (15.54 MB)
journal contribution
submitted on 2024-01-22, 06:33 and posted on 2024-01-22, 10:54 authored by Junaid Saleem, Zubair Khalid Baig Moghal, Rafael Luque, Gordon McKay

A key aspect of advancing sustainable membrane technology is to source eco-friendly polymers, such as recycled plastic waste, use renewable plant-based solvents, and limit the number of solvents used in dissolution-precipitation processes. In this study, we upcycle polypropylene PP waste into bi-layered microporous superhydrophobic membranes using a single plant-based solvent, Cymene, through tandem spin-casting and annealing. The surface roughness and hydrophobicity of the top layer enhance selectivity, while the presence of micropores ensures efficient liquid passage and high permeability. The microporous bottom layer serves as a substrate for the top layer, providing structural support. Various annealing conditions were employed to optimize hydrophobicity, roughness, porosity and strength of as-prepared membranes, yielding high permeance and outstanding separation efficiency. The fabricated membranes were subjected to oil–water emulsion separations, demonstrating a contact angle exceeding 155° and a surface roughness of 123 nm, resulting in an organic solvent flux of 14,000 Lm-2h−1 with a 96 % water rejection. Tensile strength and strain % were found to be 13–28 MPa and 20–27 %, respectively. This research provided access to environmentally friendly membranes, adding value to plastic waste with potential benefits to both the polymer and membrane industries as they transition towards a circular economy.

Other Information

Published in: Chemical Engineering Journal
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.cej.2024.148560

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2024

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Qatar University
  • Center for Advanced Materials - QU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC