Manara - Qatar Research Repository
Browse

Thermodynamics Analysis of a Membrane Distillation Crystallization Ion Recovery System for Hydroponic Greenhouses Assisted with Renewable Energy

journal contribution
submitted on 2024-08-12, 10:07 and posted on 2024-08-12, 10:08 authored by Ragad F. Alshebli, Yusuf Bicer

Sustaining agricultural demands is a typical problem, particularly in locations afflicted by the scarcity of fresh water, poor farming soil, and hot weather. The main goal of this study is to perform a thermodynamic analysis of an integrated multigeneration system containing a direct contact membrane distillation crystallization system that recovers beneficial hydroponic farming nutrients from seawater using renewable energy resources. A parametric study is carried out to determine the impacts of various factors on the system, such as changing the rate of mass flow rate, recovery ratio, and salinity. This study proposes a novel sustainable multigeneration system for seawater desalination and ions recovery using the direct contact membrane distillation crystallization system to provide the hydroponic solution and greenhouse ventilation using the dual evaporator vapor compression refrigeration system. With overall exergy efficiency and energy efficiency of 41.40%, and 39.80%, respectively, the system requires about 1182.69 kW and 5314.6 kW of electrical and thermal power in total, respectively, to desalinate 5 kg/s of seawater and recover 170 mg/s of Sulfate (SO4), 81.28 mg/s of Magnesium (Mg), 25.48 mg/s of Calcium (Ca), and 24.16 mg/s of Potassium (K), yielding about 4.4 kg/s of a hydroponic solution, and ventilating 25 greenhouses with a volume of 600 m3 of single greenhouse.

Other Information

Published in: Sustainability
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/su15031876

Funding

Open Access funding provided by the Qatar National Library.

Hamad Bin Khalifa University (210043645).

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC