Manara - Qatar Research Repository
Browse
DOCUMENT
10.1016_j.arabjc.2015.12.003.pdf (2.49 MB)
DOCUMENT
supp_1-s2.0-S1878535215003317-mmc1.docx (71.84 kB)
1/0
2 files

The nature and kinetics of the adsorption of dibenzothiophene in model diesel fuel on carbonaceous materials loaded with aluminum oxide particles

journal contribution
submitted on 2024-05-27, 05:29 and posted on 2024-05-27, 05:29 authored by Mazen K. Nazal, Mazen Khaled, Muataz A. Atieh, Isam H. Aljundi, Ghassan A. Oweimreen, Abdalla M. Abulkibash

The resulted environmental and industrial problems from presence of sulfur compounds such as dibenzothiophene (DBT) in some fuel led to attract greater interest in research on the removal of these compounds. In this study the adsorption isotherms of dibenzothiophene (DBT) in model diesel fuel were obtained and desulfurization kinetics was carried out. The adsorbents used were commercial coconut activated carbon (AC), multiwall carbon nanotubes (CNT) and synthesized graphene oxide (GO) loaded with 5% and 10.9% aluminum (Al) in the form of aluminum oxide (Al2O3) particles to improve the chemical properties of their surface. The physicochemical properties for these adsorbents were characterized using thermal gravimetric analysis (TGA), N2 adsorption–desorption surface area analyzer, scanning electron microscope (SEM), energetic dispersive X-ray diffractogram (EDX), field emission electron microscope (FE-TEM) and X-ray photoelectron spectrometer (XPS). The adsorption capacities for DBT on the aluminum oxide modified adsorbents are improved by about twofold, which is attributable to introduction of Al2O3 Lewis acid as an additional adsorption site. The highest adsorption capacity for DBT (85±1mg/g) with high selectivity factor relative to naphthalene (54mg/g) was achieved using loaded activated carbon with 5% Al. The adsorption capacities, removal selectivity and efficiencies with which the other prepared adsorbents remove DBT from model fuel are reported. The adsorption isotherms fitted both the Langmuir and Freundlich models. The adsorption rate for DBT follows pseudo-second order kinetics with correlation coefficients close to 1.00. The adsorbents are stable and reusable for at least 5 times.

Other Information

Published in: Arabian Journal of Chemistry
License: http://creativecommons.org/licenses/by-nc-nd/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.arabjc.2015.12.003

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    Qatar Environment and Energy Research Institute - HBKU

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC