Manara - Qatar Research Repository
Browse

The impact of cost function globality and locality in hybrid quantum neural networks on NISQ devices

Download (8.66 MB)
journal contribution
submitted on 2024-08-12, 05:27 and posted on 2024-08-12, 05:27 authored by Muhammad Kashif, Saif Al-Kuwari

Quantum neural networks (QNNs) are often challenged with the problem of flat cost function landscapes during training, known as barren plateaus (BP). A solution to potentially overcome the problem of the BP has recently been proposed by Cerezo et al In this solution, it is shown that, for an arbitrary deep quantum layer(s) in QNNs, a global cost function (all qubits measured in an n-qubit system) will always experience BP, whereas a local cost function (single qubit measured in an n-qubit system) can help to alleviate the problem of BP to a certain depth ( )). In this paper, we empirically analyze the locality and globality of the cost function in hybrid quantum neural networks. We consider two application scenarios namely, binary and multi-class classification, and show that for multiclass classification, the local cost function setting does not follow the claims of Cerezo et al; that is, the local cost function does not result in an extended quantum layer’s depth. We also show that for multiclass classification, the overall performance in terms of accuracy for the global cost function setting is significantly higher than the local cost function setting. On the other hand, for binary classification, our results show that the local cost function setting follows the claims of Cerezo et al, and results in an extended depth of quantum layers. However, the global cost function setting still performs slightly better than the local cost function.

Other Information

Published in: Machine Learning: Science and Technology
License: http://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1088/2632-2153/acb12f

History

Language

  • English

Publisher

IOP Publishing

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC