Manara - Qatar Research Repository
Browse

Template free synthesis of CuO nanocomposite for catalytic hydrogenation of CO2

journal contribution
submitted on 2024-01-29, 11:37 and posted on 2024-01-29, 11:38 authored by Haseena Onthath, Mostafa H. Sliem, Mithra Geetha, Kishor Kumar Sadasivuni, Aboubakr M. Abdullah, Bijandra Kumar

Increasing CO2 emissions from industry has disastrous consequences for the environment. Effective utilization of CO2 as a carbon source can address the environmental challenges, and we can address the energy crisis caused by fossil fuel consumption. Electrochemical conversion of CO2 is a promising method recently gaining widespread popularity. Its high productivity, however, remains a major challenge. This work involved a facile novel preparation of a suitable CuO nanocomposite to reduce CO2 into useful fuels effectively. Hydrothermal synthesis was used to synthesize the nanocomposite. The synthesized NC's structure, morphology, and elemental analysis were evaluated using XRD, Raman spectroscopy, SEM, and TEM. ICP-OES analysis was performed to quantify Cu concentration in the CuO composite, confirming 98.6% of Cu of the prepared matrix. The cyclic voltammetry method has been used to study the electrochemical activity of NC for CO2 reduction. Additionally, the NMR & GC-MS analyses were performed to identify the product. Regarding CO2 reduction, the NC performed greatly better than the ordinary CuO. In addition, the NC exhibits high structural stability and durability, demonstrating its potential to reduce CO2 into fuels.

Other Information

Published in: Journal of Environmental Management
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.jenvman.2023.118592

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC