Targeted MicroRNA Profiling Reveals That Exendin-4 Modulates the Expression of Several MicroRNAs to Reduce Steatosis in HepG2 Cells
Excess hepatic lipid accumulation is the hallmark of non-alcoholic fatty liver disease (NAFLD), for which no medication is currently approved. However, glucagon-like peptide-1 receptor agonists (GLP-1RAs), already approved for treating type 2 diabetes, have lately emerged as possible treatments. Herein we aim to investigate how the GLP-1RA exendin-4 (Ex-4) affects the microRNA (miRNAs) expression profile using an in vitro model of steatosis. Total RNA, including miRNAs, was isolated from control, steatotic, and Ex-4-treated steatotic cells and used for probing a panel of 799 highly curated miRNAs using NanoString technology. Enrichment pathway analysis was used to find the signaling pathways and cellular functions associated with the differentially expressed miRNAs. Our data shows that Ex-4 reversed the expression of a set of miRNAs. Functional enrichment analysis highlighted many relevant signaling pathways and cellular functions enriched in the differentially expressed miRNAs, including hepatic fibrosis, insulin receptor, PPAR, Wnt/β-Catenin, VEGF, and mTOR receptor signaling pathways, fibrosis of the liver, cirrhosis of the liver, proliferation of hepatic stellate cells, diabetes mellitus, glucose metabolism disorder and proliferation of liver cells. Our findings suggest that miRNAs may play essential roles in the processes driving steatosis reduction in response to GLP-1R agonists, which warrants further functional investigation.
Other Information
Published in: International Journal of Molecular Sciences
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/ijms241411606
Funding
Open Access funding provided by Qatar Biomedical Research Institute.
History
Language
- English
Publisher
MDPIPublication Year
- 2023
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Health and Life Sciences - HBKU
- Qatar Biomedical Research Institute - HBKU
- Diabetes Research Center - QBRI