Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles
The development of advanced nanomaterials and technologies is essential in biomedical engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent advances in chitosan derivatives and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review the main concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safety using tissue cultures and animal models, and also their potential environmental impact. At the end of this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.
Other Information
Published in: International Journal of Molecular Sciences
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/ijms20225776
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
MDPIPublication Year
- 2019
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- College of Arts and Sciences - QU
- Biomedical Research Center - QU
- Qatar University Health - QU
- College of Health Sciences - QU HEALTH
- Hamad Bin Khalifa University
- Qatar Environment and Energy Research Institute - HBKU