Manara - Qatar Research Repository
Browse

Sustainable utilization of waste carbon black in alkali-activated mortar production

Download (7.84 MB)
journal contribution
submitted on 2023-10-19, 06:41 and posted on 2023-10-19, 08:48 authored by Mohammad R. Irshidat, Nasser Al-Nuaimi, Mohamed Rabie

This article investigates the potential utilization of waste carbon black (WCB) resulting from the aluminum industry as a by-product material in the fly ash-based geopolymer composites production. Experimental study was conducted to evaluate the effect of WCB on the performance of the geopolymer. Different contents of WCB including 5%, 10%, 15%, 20%, 30%, and 40%,by weight of the fly ash, have been incorporated in the geopolymer mix as either additives or fly ash replacement. Life cycle assessment (LCA) has also been conducted to evaluate the landfills utilization and the environmental impact of the WCB incorporation. The experimental results reflected that the WCB could be used as additives in small quantities (5% of fly ash weight) to the geopolymer mix without negatively affecting its performance. Adding 5% of WCB insignificantly enhanced the compressive strength of the geopolymer by 5%, increased its workability and density by 3% and 4%, respectively, and did not affect its excellent thermal stability. Scanning electron microscopic (SEM) imaging showed more unreacted fly ash particles combined with more voids and cracks within the microstructure of the geopolymer with high WCB content. Finally, incorporating WCB in the geopolymer production improved the utilization of landfills use and reduced the global warming potential, acidification potential, eutrophication potential and abiotic depletion potential.

Other Information

Published in: Case Studies in Construction Materials
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.cscm.2021.e00743

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • Center for Advanced Materials - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC