Sustainable hydrogen production: Solar-powered biomass conversion explored through (Photo)electrochemical advancements
The incorporation of biomass waste into the process of wealth creation through the production of hydrogen, a significant fuel source for renewable energy. Hydrogen production from various biomass sources, including crop remnants, algae, or waste, makes use of easily accessible and renewable materials, ensuring an uninterrupted fuel supply without exhausting fossil fuel reserves. Traditional techniques, like gasification and pyrolysis, used for hydrogen production from biomass residues, present notable challenges such as high temperature and pressure demands, substantial capital investment, and the risk of releasing pollutants. Conversely, the innovative approach of photoelectrocatalytic biomass green hydrogen production stands at the vanguard of clean energy advancements, holding great promise for directly deriving hydrogen fuel from biomass with the help of sunlight, offering a genuinely sustainable and eco-friendly resolution. The integration of sunlight with an extra electrical stimulus for biomass-to-hydrogen conversion, leveraging resources that are abundantly available and continuously renewed, endorses the truly sustainable nature of this process. The resultant hydrogen fuel, created through this method, burns cleanly, emitting solely water vapor and thus significantly curbing greenhouse gas emissions and air pollution. This exhaustive review presents a detailed evaluation of the utilization of diverse biomass raw materials, covering carbohydrates, lignin, triglycerides (fats and oils), proteins, and terpenes for photoelectrocatalytic hydrogen production. It highlights the transformative possibilities arising from the synergistic amalgamation of electrocatalytic (EC) and photocatalytic (PC) technologies, setting the new pioneering era for a significant transition towards a sustainable and effective circular economy.
Other Information
Published in: Process Safety and Environmental Protection
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.psep.2024.04.068
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
ElsevierPublication Year
- 2024
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- Center for Advanced Materials - QU
- Central Laboratories Unit - QU