Manara - Qatar Research Repository
10.1016_j.jclepro.2023.138071.pdf (5.21 MB)

Sustainable energy-water-food nexus integration and carbon management in eco-industrial parks

Download (5.21 MB)
journal contribution
submitted on 2024-01-29, 08:57 and posted on 2024-01-29, 08:57 authored by Jamileh Fouladi, Ahmed AlNouss, Tareq Al-Ansari

Today, resource depletion is a significant threat to society, exacerbated by the increasing demand for water, energy, and food resources driven by rapid population growth. Coupled with environmental conservation efforts, designing optimised and integrated Energy-Water-Food-Carbon nexus networks is increasingly essential. The objective of this study is to design a systematic approach to study the integration of the Energy-Water-Food-Carbon nexus within eco-industrial parks, uniquely focusing on the combination of the Energy-Water-Food nexus concept, constituting technology sub-systems, and carbon capture/utilisation processes. The resulting network superstructure representative of an industrial park and a case study in Qatar, consists of multiple sources and sinks, including, chemical processes (gas-to-liquid, methanol, ammonia, and liquified natural gas), desalination, wastewater treatment, representative food processes, biomass gasification, waste heat recovery and carbon capture units. Multiple scenarios are simulated and solved using the “what's Best” Mixed-Integer Global Solver to capture the synergic potential and trade-offs within resource management. The outcomes determine that the biomass driven and carbon capture utilisation scenarios are the most significant, which improve all emissions by 11.4% and 40%, respectively, while there was no significant change in the scenario of wastewater treatment and reuse. The total cost of the optimum solution after biomass utilisation is almost 3% more expensive compared to the base scenario. Furthermore, the waste heat utilisation scenario can potentially reduce a corresponding global warming potential amount of almost 1.55 × 104 Mt CO2-eq/yr for more efficient resource management.

Other Information

Published in: Journal of Cleaner Production
See article on publisher's website:


Open Access funding provided by the Qatar National Library.



  • English



Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU