Manara - Qatar Research Repository
Browse
10.1016_j.seps.2023.101602.pdf (4.09 MB)

Supply chain planning of vaccine and pharmaceutical clusters under uncertainty: The case of COVID-19

Download (4.09 MB)
journal contribution
submitted on 2024-01-31, 09:41 and posted on 2024-01-31, 09:42 authored by Farid Kochakkashani, Vahid Kayvanfar, Alireza Haji

As an abrupt epidemic occurs, healthcare systems are shocked by the surge in the number of susceptible patients' demands, and decision-makers mostly rely on their frame of reference for urgent decision-making. Many reports have declared the COVID-19 impediments to trading and global economic growth. This study aims to provide a mathematical model to support pharmaceutical supply chain planning during the COVID-19 epidemic. Additionally, it aims to offer new insights into hospital supply chain problems by unifying cold and non-cold chains and considering a wide range of pharmaceuticals and vaccines. This approach is unprecedented and includes an analysis of various pharmaceutical features such as temperature, shelf life, priority, and clustering. To propose a model for planning the pharmaceutical supply chains, a mixed-integer linear programming (MILP) model is used for a four-echelon supply chain design. This model aims to minimize the costs involved in the pharmaceutical supply chain by maintaining an acceptable service level. Also, this paper considers uncertainty as an intrinsic part of the problem and addresses it through the wait-and-see method. Furthermore, an unexplored unsupervised learning method in the realm of supply chain planning has been used to cluster the pharmaceuticals and the vaccines and its merits and drawbacks are proposed. A case of Tehran hospitals with real data has been used to show the model's capabilities, as well. Based on the obtained results, the proposed approach is able to reach the optimum service level in the COVID conditions while maintaining a reduced cost. The experiment illustrates that the hospitals' adjacency and emergency orders alleviated the service level significantly. The proposed MILP model has proven to be efficient in providing a practical intuition for decision-makers. The clustering technique reduced the size of the problem and the time required to solve the model considerably.

Other Information

Published in: Socio-Economic Planning Sciences
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.seps.2023.101602

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU