Stress Classification Using Photoplethysmogram-Based Spatial and Frequency Domain Images
Stress is subjective and is manifested differently from one person to another. Thus, the performance of generic classification models that classify stress status is crude. Building a person-specific model leads to a reliable classification, but it requires the collection of new data to train a new model for every individual and needs periodic upgrades because stress is dynamic. In this paper, a new binary classification (called stressed and non-stressed) approach is proposed for a subject’s stress state in which the inter-beat intervals extracted from a photoplethysomogram (PPG) were transferred to spatial images and then to frequency domain images according to the number of consecutive. Then, the convolution neural network (CNN) was used to train and validate the classification accuracy of the person’s stress state. Three types of classification models were built: person-specific models, generic classification models, and calibrated-generic classification models. The average classification accuracies achieved by person-specific models using spatial images and frequency domain images were 99.9%, 100%, and 99.8%, and 99.68%, 98.97%, and 96.4% for the training, validation, and test, respectively. By combining 20% of the samples collected from test subjects into the training data, the calibrated generic models’ accuracy was improved and outperformed the generic performance across both the spatial and frequency domain images. The average classification accuracy of 99.6%, 99.9%, and 88.1%, and 99.2%, 97.4%, and 87.6% were obtained for the training set, validation set, and test set, respectively, using the calibrated generic classification-based method for the series of inter-beat interval (IBI) spatial and frequency domain images. The main contribution of this study is the use of the frequency domain images that are generated from the spatial domain images of the IBI extracted from the PPG signal to classify the stress state of the individual by building person-specific models and calibrated generic models.
Other Information
Published in: Sensors
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/s20185312
Funding
Hamad Bin Khalifa University, The College of Science and Engineering (N/A).
History
Language
- English
Publisher
MDPIPublication Year
- 2020
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Science and Engineering - HBKU