Statistical methods and resources for biomarker discovery using metabolomics
Metabolomics is a dynamic tool for elucidating biochemical changes in human health and disease. Metabolic profiles provide a close insight into physiological states and are highly volatile to genetic and environmental perturbations. Variation in metabolic profiles can inform mechanisms of pathology, providing potential biomarkers for diagnosis and assessment of the risk of contracting a disease. With the advancement of high-throughput technologies, large-scale metabolomics data sources have become abundant. As such, careful statistical analysis of intricate metabolomics data is essential for deriving relevant and robust results that can be deployed in real-life clinical settings. Multiple tools have been developed for both data analysis and interpretations. In this review, we survey statistical approaches and corresponding statistical tools that are available for discovery of biomarkers using metabolomics.
Other Information
Published in: BMC Bioinformatics
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1186/s12859-023-05383-0
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
Springer NaturePublication Year
- 2023
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- Biomedical Research Center - QU
- Qatar University Health - QU
- Sidra Medicine