Manara - Qatar Research Repository
Browse
energies-15-02657.pdf (3.11 MB)

Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection

Download (3.11 MB)
journal contribution
submitted on 2024-04-17, 07:58 and posted on 2024-04-17, 07:58 authored by Rabah Ismaen, Tarek Y. ElMekkawy, Shaligram Pokharel, Adel Elomri, Mohammed Al-Salem

With the increasing need for cooling and the concerns for pollution due to fossil fuel-based energy use, renewable energy is considered an add-on to cooling technologies. The climatic condition in the Middle East, analyzed in this paper, provides the potential to integrate solar energy with the cooling system. Due to the availability of various solar energy and cooling technologies, multiple configurations of solar-cooling systems can be considered to satisfy the cooling demand. The research presented in this paper aims to assess and compare these configurations by considering the energy prices and the installation area. The proposed model is formulated in Mixed-Integer Linear Programming and optimizes the holistic system design and operation. The economic, renewable energy use, and environmental performances of the optimal solution for each configuration are analyzed and compared to the base grid-DCS configuration. Results show that the electricity tariff and the available installation area impact the economic competitiveness of the solar energy integration. When electricity tariff is subsided (low), the conventional grid-based DCS is the most competitive. The PV-DCS configuration is economically competitive among the solar assisted cooling systems, and it can contribute to reducing the environmental impact by 58.3%. The PVT-DCS configuration has the lowest operation cost and the highest environmental performance by decreasing the global warming potential by 89.5%. The T-DCS configuration becomes economically competitive only at high electricity tariffs.

Other Information

Published in: Energies
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/en15072657

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Engineering - QU
  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU