Manara - Qatar Research Repository
Browse

Software-Defined-Networking-Based One-versus-Rest Strategy for Detecting and Mitigating Distributed Denial-of-Service Attacks in Smart Home Internet of Things Devices

Download (732.18 kB)
journal contribution
submitted on 2024-09-26, 05:20 and posted on 2024-09-26, 05:29 authored by Neder Karmous, Mohamed Ould-Elhassen Aoueileyine, Manel Abdelkader, Lamia Romdhani, Neji Youssef

The number of connected devices or Internet of Things (IoT) devices has rapidly increased. According to the latest available statistics, in 2023, there were approximately 17.2 billion connected IoT devices; this is expected to reach 25.4 billion IoT devices by 2030 and grow year over year for the foreseeable future. IoT devices share, collect, and exchange data via the internet, wireless networks, or other networks with one another. IoT interconnection technology improves and facilitates people’s lives but, at the same time, poses a real threat to their security. Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are considered the most common and threatening attacks that strike IoT devices’ security. These are considered to be an increasing trend, and it will be a major challenge to reduce risk, especially in the future. In this context, this paper presents an improved framework (SDN-ML-IoT) that works as an Intrusion and Prevention Detection System (IDPS) that could help to detect DDoS attacks with more efficiency and mitigate them in real time. This SDN-ML-IoT uses a Machine Learning (ML) method in a Software-Defined Networking (SDN) environment in order to protect smart home IoT devices from DDoS attacks. We employed an ML method based on Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (kNN), and Naive Bayes (NB) with a One-versus-Rest (OvR) strategy and then compared our work to other related works. Based on the performance metrics, such as confusion matrix, training time, prediction time, accuracy, and Area Under the Receiver Operating Characteristic curve (AUC-ROC), it was established that SDN-ML-IoT, when applied to RF, outperforms other ML algorithms, as well as similar approaches related to our work. It had an impressive accuracy of 99.99%, and it could mitigate DDoS attacks in less than 3 s. We conducted a comparative analysis of various models and algorithms used in the related works. The results indicated that our proposed approach outperforms others, showcasing its effectiveness in both detecting and mitigating DDoS attacks within SDNs. Based on these promising results, we have opted to deploy SDN-ML-IoT within the SDN. This implementation ensures the safeguarding of IoT devices in smart homes against DDoS attacks within the network traffic.

Other Information

Published in: Sensors
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/s24155022

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2024

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • Core Curriculum Program - QU