Manara - Qatar Research Repository
Browse

Role of grain boundaries in hydrogen embrittlement of alloy 725: single and bi-crystal microcantilever bending study

journal contribution
submitted on 2024-09-01, 11:07 and posted on 2024-09-01, 11:08 authored by Iman Taji, Tarlan Hajilou, Shabnam Karimi, Florian Schott, Ernst Plesiutschnig, Afrooz Barnoush, Roy Johnsen

In situ electrochemical microcantilever bending tests were conducted in this study to investigate the role of grain boundaries (GBs) in hydrogen embrittlement (HE) of Alloy 725. Specimens were prepared under three different heat treatment conditions and denoted as solution-annealed (SA), aged (AG) and over-aged (OA) samples. For single-crystal beams in an H-containing environment, all three heat-treated samples exhibited crack formation and propagation; however, crack propagation was more severe in the OA sample. The anodic extraction of H presented similar results as those under the H-free condition, indicating the reversibility of the H effect under the tested conditions. Bi-crystal micro-cantilevers bent under H-free and H-charged conditions revealed the significant role of the GB in the HE of the beams. The results indicated that the GB in the SA sample facilitated dislocation dissipation, whereas for the OA sample, it caused the retardation of crack propagation. For the AG sample, testing in an H-containing environment led to the formation of a sharp, severe crack along the GB path.

Other Information

Published in: International Journal of Hydrogen Energy
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.ijhydene.2022.01.251

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    Qatar Environment and Energy Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC