submitted on 2024-07-23, 05:28 and posted on 2024-07-23, 08:53authored byMuhammad Kashif, Saif Al-Kuwari
<p dir="ltr">The barren plateau problem in quantum neural networks (QNNs) is a significant challenge that hinders the practical success of QNNs. In this paper, we introduce residual quantum neural networks (ResQNets) as a solution to address this problem. ResQNets are inspired by classical residual neural networks and involve splitting the conventional QNN architecture into multiple quantum nodes, each containing its own parameterized quantum circuit, and introducing residual connections between these nodes. Our study demonstrates the efficacy of ResQNets by comparing their performance with that of conventional QNNs and plain quantum neural networks through multiple training experiments and analyzing the cost function landscapes. Our results show that the incorporation of residual connections results in improved training performance. Therefore, we conclude that ResQNets offer a promising solution to overcome the barren plateau problem in QNNs and provide a potential direction for future research in the field of quantum machine learning.</p><h2>Other Information</h2><p dir="ltr">Published in: EPJ Quantum Technology<br>License: <a href="https://creativecommons.org/licenses/by/4.0" target="_blank">https://creativecommons.org/licenses/by/4.0</a><br>See article on publisher's website: <a href="https://dx.doi.org/10.1140/epjqt/s40507-023-00216-8" target="_blank">https://dx.doi.org/10.1140/epjqt/s40507-023-00216-8</a></p>
Funding
Open Access funding provided by the Qatar National Library.