Renin-Angiotensin System overactivation in polycystic ovary syndrome, a risk for SARS-CoV-2 infection?
Background
The SARS-CoV-2 coronavirus gains entry to target cells via the angiotensin-converting enzyme 2 (ACE2) receptor present on cells in blood vessels, lungs, heart, intestines, and kidneys. Renin-Angiotensin System (RAS) overactivity has also been described in metabolic syndrome, type 2 diabetes (T2D) and obesity, conditions shared by women with polycystic ovary syndrome (PCOS) We hypothesized that RAS overactivity may be present in PCOS.
Methods
We determined plasma levels of RAS-related proteins in a cohort of age matched control women (n = 97) and women with PCOS (n = 146). Plasma levels of RAS-related proteins (ACE2, Renin and Angiotensinogen (AGT)) were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement.
Results
PCOS women had a higher BMI (p < 0.001), systolic (p < 0.0001) and diastolic (p < 0.05) blood pressure, waist circumference (p < 0.0001), testosterone (p < 0.0001), free androgen index (p < 0.0001) and CRP (p < 0.0001). Renin was elevated in PCOS (p < 0.05) and angiotensinogen was lower in PCOS (p < 0.05), indicating overactivity of the RAS system in PCOS. ACE2 levels were lower in PCOS (p < 0.05), suggesting that PCOS women are at risk for development of hypertension.
Conclusion
RAS proteins levels differed between PCOS and control women, suggesting that the insulin resistance inherent in PCOS may predispose these women to more severe COVID-19 infection.
Other Information
Published in: Metabolism Open
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.metop.2020.100052
Funding
Open Access funding provided by the Qatar National Library
History
Language
- English
Publisher
ElsevierPublication Year
- 2020
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International LicenseInstitution affiliated with
- Hamad Bin Khalifa University
- Qatar Biomedical Research Institute - HBKU