Manara - Qatar Research Repository
Browse

Removal and Recovery of Dissolved Oil from High-Salinity Wastewater Using Graphene–Iron Oxide Nanocomposites

Download all (2.2 MB)
journal contribution
submitted on 2024-08-29, 09:57 and posted on 2024-08-29, 09:58 authored by Ahmad Diraki, Hamish R. Mackey, Gordon McKay, Ahmed Abdala

We report the synthesis of reduced graphene oxide (rGO)-α-Fe2O3 nanocomposite and its application to remove and recover dissolved oil from a high-salinity oil–water emulsion in batch and column/breakthrough setups. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption characterized the synthesized nanocomposite’s structure, morphology, and surface properties. Both batch and continuous breakthrough adsorption studies were investigated. The effect of the adsorption parameters on the adsorption capacity and removal efficiency was analyzed. The rGO-Fe2O3 nanocomposite (rGO-Fe2O3 -NC) demonstrated a superior adsorption capacity, both when measured experimentally (1213 mg/g) and predicted using the Freundlich isotherm (1301 mg/g). The adsorption process followed pseudo-second-order kinetic, and the rGO-Fe2O3 -NC exhibited a very rapid removal, with more than 60% of oil being removed within 10 min. Breakthrough confirmed the exceptional removal capacities with good regeneration and cycling ability under a short contact time. Moreover, the adsorption capacity was enhanced with an emulsion salinity of up to 100,000 ppm, confirming the suitability for high-salinity wastewater.

Other Information

Published in: Applied Sciences
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/app12199414

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Texas A&M University at Qatar

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC