Manara - Qatar Research Repository
Browse

Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach

journal contribution
submitted on 2024-09-24, 09:32 and posted on 2024-09-24, 09:33 authored by Amélie Bonnefond, Loïc Yengo, Aurélie Dechaume, Mickaël Canouil, Maxime Castelain, Estelle Roger, Frédéric Allegaert, Robert Caiazzo, Violeta Raverdy, Marie Pigeyre, Abdelilah Arredouani, Jean-Michel Borys, Claire Lévy-Marchal, Jacques Weill, Ronan Roussel, Beverley Balkau, Michel Marre, François Pattou, Thierry Brousseau, Philippe Froguel

Background

Salivary (AMY1) and pancreatic (AMY2) amylases hydrolyze starch. Copy number of AMY1A (encoding AMY1) was reported to be higher in populations with a high-starch diet and reduced in obese people. These results based on quantitative PCR have been challenged recently. We aimed to re-assess the relationship between amylase and adiposity using a systems biology approach.

Methods

We assessed the association between plasma enzymatic activity of AMY1 or AMY2, and several metabolic traits in almost 4000 French individuals from D.E.S.I.R. longitudinal study. The effect of the number of copies of AMY1A (encoding AMY1) or AMY2A (encoding AMY2) measured through droplet digital PCR was then analyzed on the same parameters in the same study. A Mendelian randomization analysis was also performed. We subsequently assessed the association between AMY1A copy number and obesity risk in two case-control studies (5000 samples in total). Finally, we assessed the association between body mass index (BMI)-related plasma metabolites and AMY1 or AMY2 activity.

Results

We evidenced strong associations between AMY1 or AMY2 activity and lower BMI. However, we found a modest contribution of AMY1A copy number to lower BMI. Mendelian randomization identified a causal negative effect of BMI on AMY1 and AMY2 activities. Yet, we also found a significant negative contribution of AMY1 activity at baseline to the change in BMI during the 9-year follow-up, and a significant contribution of AMY1A copy number to lower obesity risk in children, suggesting a bidirectional relationship between AMY1 activity and adiposity. Metabonomics identified a BMI-independent association between AMY1 activity and lactate, a product of complex carbohydrate fermentation.

Conclusions

These findings provide new insights into the involvement of amylase in adiposity and starch metabolism.

Other Information

Published in: BMC Medicine
License: https://creativecommons.org/licenses/by/4.0/  
See article on publisher's website: https://dx.doi.org/10.1186/s12916-017-0784-x

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2017

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Biomedical Research Institute - HBKU