Recognition of Different Types of Leukocytes Using YOLOv2 and Optimized Bag-of-Features
White blood cells (WBCs) protect human body against different types of infections including fungal, parasitic, viral, and bacterial. The detection of abnormal regions in WBCs is a difficult task. Therefore a method is proposed for the localization of WBCs based on YOLOv2-Nucleus-Cytoplasm, which contains darkNet-19 as a basenetwork of the YOLOv2 model. In this model features are extracted from LeakyReLU-18 of darkNet-19 and supplied as an input to the YOLOv2 model. The YOLOv2-Nucleus-Cytoplasm model localizes and classifies the WBCs with maximum score labels. It also localize the WBCs into the blast and non-blast cells. After localization, the bag-of-features are extracted and optimized by using particle swarm optimization(PSO). The improved feature vector is fed to classifiers i.e., optimized naïve Bayes (O-NB) & optimized discriminant analysis (O-DA) for WBCs classification. The experiments are performed on LISC, ALL-IDB1, and ALL-IDB2 datasets.
Other Information
Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2020.3021660
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
IEEEPublication Year
- 2020
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- College of Business and Economics - QU