Manara - Qatar Research Repository
Browse

Recent progress in two dimensional Mxenes for photocatalysis: a critical review

Download (3.84 MB)
journal contribution
submitted on 2024-08-22, 11:59 and posted on 2024-08-22, 12:00 authored by Tahir Haneef, Kashif Rasool, Jibran Iqbal, Rab Nawaz, Muhammad Raza Ul Mustafa, Khaled A Mahmoud, Tapati Sarkar, Asif Shahzad

Transition metal carbides and nitrides, generally known as MXenes have emerged as an alternative to improve photocatalytic performance in renewable energy and environmental remediation applications because of their high surface area, tunable chemistry, and easily adjustable elemental compositions. MXenes have many interlayer groups, surface group operations, and a flexible layer spacing that makes them ideal catalysts. Over 30 different members of the MXenes family have been explored and successfully utilized as catalysts. Particularly, MXenes have achieved success as a photocatalyst for carbon dioxide reduction, nitrogen fixation, hydrogen evolution, and photochemical degradation. The structure of MXenes and the presence of hydrophilic functional groups on the surface results in excellent photocatalytic hydrogen evolution. In addition, MXenes’ surface defects provide abundant CO2 adsorption sites. Moreover, their highly efficient catalytic oxidation activity is a result of their excellent two-dimensional nanomaterial structure and high-speed electron transport channels. This article comprehensively discusses the structure, synthesis techniques, photocatalytic applications (i.e. H2 evolution, N2 fixation, CO2 reduction, and degradation of pollutants), and recyclability of MXenes. This review also critically evaluates the MXene-based heterostructure and composites photocatalyst synthesis process and their performance for organic pollutant degradation. Finally, a prospect for further research is presented in environmental and energy sciences.

Other Information

Published in: 2D Materials
License: http://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1088/2053-1583/ac9e66

History

Language

  • English

Publisher

IOP Publishing

Publication Year

  • 2022

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU