Manara - Qatar Research Repository
Browse

Quartz crystal microbalance (QCM) study of electrochemical CO2 reduction on Sn electrocatalysts

Download (9.93 MB)
journal contribution
submitted on 2025-03-10, 09:06 and posted on 2025-03-10, 09:08 authored by V.S.K. Yadav, Mohammed A.H.S. Saad, Mohammed J. Al-Marri, Anand Kumar

The extenuation of CO2 emissions using electrochemical CO2 reduction (ECR) is a promising approach. Electrochemical routes offer a number of benefits, including customizable layout, precise product modification, mild operational temperatures, and the ability to combine CO2 reduction with the production of renewable electricity. Nevertheless, the essential technique for reprocessing CO2 as a renewable resource is electrochemical CO2 reduction, yet CO2 adsorption/reduction on catalyst surfaces is challenging. To address these concerns, Mn3O4 and Sn were produced in this work at room temperature via an electrodeposition technique, which was combined with a quartz crystal microbalance (QCM) sensor suitable for room-temperature monitoring of ECR. QCM is a compelling technique for closely inspecting the responses of CO2 reduction in real time under various applied conditions. QCM was used for the first time to study the effects of Sn electrocatalysts for ECR research, and revealed the CO2 adsorption/reduction capabilities of diverse Sn catalysts. A broad investigation showed the CO2 reduction detecting ability of Sn coated QCM sensors at room temperature. The final results revealed that Sn catalysts' capacity to reduce CO2 was evident both with and without CO2 present in the solution of sodium bicarbonate electrolyte. For all the appropriate conditions, the effect of CO2 saturated electrolyte solution on the frequency and mass change with time along with applied potential were discussed in detail.

Other Information

Published in: International Journal of Hydrogen Energy
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.ijhydene.2025.02.315

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2025

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Engineering - QU
  • Gas Processing Center - CENG

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC