Manara - Qatar Research Repository
Browse

Quantum Chemistry Insight into the Interactions Between Deep Eutectic Solvents and SO<sub>2</sub>

Download (7.89 MB)
journal contribution
submitted on 2024-05-26, 11:03 and posted on 2024-05-26, 11:03 authored by Mert Atilhan, Tausif Altamash, Santiago Aparicio
<p dir="ltr">A systematic research work on the rational design of task specific Deep Eutectic Solvents (DES) has been carried out via density functional theory (DFT) in order to increase knowledge on the key interaction parameters related to efficient SO<sub>2</sub> capture by DES at a molecular level. A total of 11 different DES structures, for which high SO<sub>2</sub> affinity and solubility is expected, have been selected in this work. SO<sub>2</sub> interactions in selected DES were investigated in detail through DFT simulations and this work has generated a valuable set of information about required factors at the molecular level to provide high SO<sub>2</sub> solubility in DES, which is crucial for enhancing the current efficiency of the SO<sub>2</sub> capture process and replacing the current state of the art with environmentally friendly solvents and eventually implementing these materials in the chemical industry. Results that were obtained from DFT calculations were used to deduce the details of the type and the intensity of the interaction between DES and SO<sub>2</sub> molecules at various interaction sites as well as to quantify short-range interactions by using various methods such as quantum theory of atoms in a molecule (QTAIM), electrostatic potentials (ESP) and reduced density gradients (RDG). Systematic research on the molecular interaction characterization between DES structures and SO<sub>2</sub> molecule increases our knowledge on the rational design of task-specific DES.</p><p dir="ltr"><br></p><h2>Other Information</h2><p dir="ltr">Published in: Molecules<br>License: <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">https://creativecommons.org/licenses/by/4.0/</a><br>See article on publisher's website: <a href="https://dx.doi.org/10.3390/molecules24162963" target="_blank">https://dx.doi.org/10.3390/molecules24162963</a></p>

Funding

Open Access funding provided by the Qatar National Library.

History

Related Materials

Language

  • English

Publisher

MDPI

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Texas A&M University at Qatar
  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    Qatar Environment and Energy Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC