Quantifying Energy Reduction and Thermal Comfort for a Residential Building Ventilated with a Window-Windcatcher: A Case Study
Previous studies on window-windcatchers have shown their effectiveness in capturing the prevailing wind and redirecting it into a building, increasing the actual-to-required ventilation ratio by 9%, above what is required by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). However, the effect of implementing the proposed system on energy performance, energy costs, and thermal comfort has not been studied. Therefore, here, we investigate and test the implementation of the window-windcatcher on a typical residential building, using a validated DesignBuilder model. Compared to the base case (no window-windcatcher), the total annual energy consumption of the entire building (Etot,b), and consequently the cost, is reduced by approximately 23.3% (i.e., from 18,143 kWh/year to 13,911 kWh/year) when using the window-windcatcher. The total annual reduction in thermal discomfort hours is estimated to be 290 h, which corresponds to an average monthly reduction of approximately 24 h.
Other Information
Published in: Buildings
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/buildings13010086
Funding
Qatar National Research Fund (NPRP13S-0203-200243), Qatar Thermal Comfort Standard (QTCS): Maximizing comfort to minimize overcooling and energy waste.
History
Language
- English
Publisher
MDPIPublication Year
- 2022
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- Qatar Environment and Energy Research Institute - HBKU