Manara - Qatar Research Repository
Browse
- No file added yet -

PulseOblivion: An Effective Session-Based Continuous Authentication Scheme Using PPG Signals

Download (1.79 MB)
journal contribution
submitted on 2024-02-18, 11:03 and posted on 2024-02-18, 11:19 authored by Hussein A. Aly, Roberto Di Pietro

In this paper, we propose a novel session-based continuous authentication model using photoplethysmography (PPG). Unlike previous PPG-based authentication techniques that generate user signatures only during the initial interaction, our session-based approach tackles inter session PPG drifting by generating a user signature at the start of each session. Our model is composed by two modules: Firstly, heavy deep autoencoders (AE) are utilized for feature extraction and, secondly, a lightweight Local Outlier Factor (LOF) is employed for user authentication.Additionally, we introduce a continuous updating system for the LOF model, which automatically recovers from security breaches and can enhance authentication accuracy by more than 9%. Our experiments show that in a single-session scenario, our model achieves authentication accuracies of 93.5% and 91.8% on the CapnoBase and BIMDC benchmarking datasets, respectively, outperforming the state-of-the-art baseline model by 3.2% and 1.6% on both datasets, respectively. In multiple-session scenarios, our scheme attains an authentication accuracy of 95% when tested on the BioSec2 dataset, effectively mitigating inter-session PPG drifting and achieving an advantage of more than 8.5% in authentication accuracy over the state-of-the-art method. In terms of execution speed, our solution is seven times faster at runtime compared to competing state-of-the-art solutions.

Other Information

Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2023.3329993

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

IEEE

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • College of Engineering - QU