Manara - Qatar Research Repository
Browse

Protein arginine methyltransferase 5 (PRMT5) activates WNT/β‐catenin signalling in breast cancer cells via epigenetic silencing of DKK1 and DKK3

Download (1.86 MB)
journal contribution
submitted on 2023-03-15, 08:05 and posted on 2023-03-15, 11:17 authored by Harshita Shailesh, Kodappully S. Siveen, Saïd Sif

Protein arginine methyltransferase 5 (PRMT5) activity is dysregulated in many aggressive cancers and its enhanced levels are associated with increased tumour growth and survival. However, the role of PRMT5 in breast cancer remains underexplored. In this study, we show that PRMT5 is overexpressed in breast cancer cell lines, and that it promotes WNT/β-CATENIN proliferative signalling through epigenetic silencing of pathway antagonists, DKK1 and DKK3, leading to enhanced expression of c-MYC, CYCLIN D1 and SURVIVIN. Through chromatin immunoprecipitation (ChIP) studies, we found that PRMT5 binds to the promoter region of WNT antagonists, DKK1 and DKK3, and induces symmetric methylation of H3R8 and H4R3 histones. Our findings also show that PRMT5 inhibition using a specific small molecule inhibitor, compound 5 (CMP5), reduces PRMT5 recruitment as well as methylation of H3R8 and H4R3 histones in the promoter regions of DKK1 and DKK3, which consequently results in reduced expression CYCLIN D1 and SURVIVIN. Furthermore, CMP5 treatment either alone or in combination with 5-Azacytidine and Trichostatin A restored expression of DKK1 and DKK3 in TNBCs. PRMT5 inhibition also altered the growth characteristics of breast cancer cells and induced their death. Collectively, these results show that PRMT5 controls breast cancer cell growth through epigenetic silencing of WNT/β-CATENIN pathway antagonists, DKK1 and DKK3, resulting in up-regulation of WNT/β-CATENIN proliferative signalling.

Other Information

Published in: Journal of Cellular and Molecular Medicine
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: http://dx.doi.org/10.1111/jcmm.16260

History

Language

  • English

Publisher

Wiley

Publication Year

  • 2021

Institution affiliated with

  • Qatar University
  • Hamad Medical Corporation

Usage metrics

    Manara - Qatar Research Repository

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC