Manara - Qatar Research Repository
Browse

Polysulfone Membranes Embedded with Halloysites Nanotubes: Preparation and Properties

Download (17.27 MB)
journal contribution
submitted on 2024-03-06, 08:00 and posted on 2024-03-06, 08:01 authored by Nagla Kamal, Viktor Kochkodan, Atef Zekri, Said Ahzi

In the present study, nanocomposite ultrafiltration membranes were prepared by incorporating nanotubes clay halloysite (HNTs) into polysulfone (PSF) and PSF/polyvinylpyrrolidone (PVP) dope solutions followed by membrane casting using phase inversion method. Characterization of HNTs were conducted using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermogravimetric (TGA) analysis. The pore structure, morphology, hydrophilicity and mechanical properties of the composite membranes were characterized by using SEM, water contact angle (WCA) measurements, and dynamic mechanical analysis. It was shown that the incorporation of HNTs enhanced hydrophilicity and mechanical properties of the prepared PSF membranes. Compared to the pristine PSF membrane, results show that the total porosity and pore size of PSF/HNTs composite membranes increased when HNTs loadings were more than 0.5 wt % and 1.0 wt %, respectively. These findings correlate well with changes in water flux of the prepared membranes. It was observed that HNTs were homogenously dispersed within the PSF membrane matrix at HNTs content of 0.1 to 0.5 wt % and the PSF/HNTs membranes prepared by incorporating 0.2 wt % HNTs loading possess the optimal mechanical properties in terms of elastic modulus and yield stress. In the case of the PSF/PVP matrix, the optimal mechanical properties were obtained with 0.3 wt % of HNTs because PVP enhances the HNTs distribution. Results of bovine serum albumin (BSA) filtration tests indicated that PSF/0.2 wt % HNTs membrane exhibited high BSA rejection and notable anti-fouling properties.

Other Information

Published in: Membranes
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/membranes10010002

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC