Manara - Qatar Research Repository
Browse
e002057.full.pdf (990.34 kB)

Plasma heat shock protein response to euglycemia in type 2 diabetes

Download (990.34 kB)
journal contribution
submitted on 2024-05-21, 11:36 and posted on 2024-05-21, 11:37 authored by Alexander S Atkin, Abu Saleh Md Moin, Ahmed Al-Qaissi, Thozhukat Sathyapalan, Stephen L Atkin, Alexandra E Butler

Introduction

Glucose variability is associated with mortality and macrovascular diabetes complications. The mechanisms through which glucose variability mediates tissue damage are not well understood, although cellular oxidative stress is likely involved. As heat shock proteins (HSPs) play a role in the pathogenesis of type 2 diabetes (T2D) complications and are rapidly responsive, we hypothesized that HSP-related proteins (HSPRPs) would differ in diabetes and may respond to glucose normalization.

Research design and methods

A prospective, parallel study in T2D (n=23) and controls (n=23) was undertaken. T2D subjects underwent insulin-induced blood glucose normalization from baseline 7.6±0.4 mmol/L (136.8±7.2 mg/dL) to 4.5±0.07 mmol/L (81±1.2 mg/dL) for 1 hour. Control subjects were maintained at 4.9±0.1 mmol/L (88.2±1.8 mg/dL). Slow Off-rate Modified Aptamer-scan plasma protein measurement determined a panel of HSPRPs.

Results

At baseline, E3-ubiquitin-protein ligase (carboxyl-terminus of Hsc70 interacting protein (CHIP) or HSPABP2) was lower (p=0.03) and ubiquitin-conjugating enzyme E2G2 higher (p=0.003) in T2D versus controls. Following glucose normalization, DnaJ homolog subfamily B member 1 (DNAJB1 or HSP40) was reduced (p=0.02) in T2D, with HSP beta-1 (HSPB1) and HSP-70-1A (HSP70-1A) (p=0.07 and p=0.09, respectively) also approaching significance relative to T2D baseline levels.

Conclusions

Key HSPRPs involved in critical protein interactions, CHIP and UBE2G2, were altered in diabetes at baseline. DNAJB1 fell in response to euglycemia, suggesting that HSPs are reacting to basal stress that could be mitigated by tight glucose control with reduction of glucose variability.

Other Information

Published in: BMJ Open Diabetes Research & Care
License: http://creativecommons.org/licenses/by-nc/4.0/
See article on publisher's website: https://dx.doi.org/10.1136/bmjdrc-2020-002057

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

BMJ

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Biomedical Research Institute - HBKU
  • Diabetes Research Center - QBRI

Methodology

A prospective, parallel study in T2D (n=23) and controls (n=23) was undertaken. T2D subjects underwent insulin-induced blood glucose normalization from baseline 7.6±0.4 mmol/L (136.8±7.2 mg/dL) to 4.5±0.07 mmol/L (81±1.2 mg/dL) for 1 hour. Control subjects were maintained at 4.9±0.1 mmol/L (88.2±1.8 mg/dL). Slow Off-rate Modified Aptamer-scan plasma protein measurement determined a panel of HSPRPs.