Manara - Qatar Research Repository
Browse
1/1
2 files

Pilot Scale Study: First Demonstration of Hydrophobic Membranes for the Removal of Ammonia Molecules from Rendering Condensate Wastewater

journal contribution
submitted on 2024-06-13, 11:19 and posted on 2024-06-23, 13:32 authored by Brian Brennan, Ciprian Briciu-Burghina, Sean Hickey, Thomas Abadie, Sultan M. al Ma Awali, Yan Delaure, John Durkan, Linda Holland, Brid Quilty, Mohammad Tajparast, Casper Pulit, Lorna Fitzsimons, Kieran Nolan, Fiona Regan, Jenny Lawler

Hydrophobic membrane contactors represent a promising solution to the problem of recycling ammoniacal nitrogen (N-NH4) molecules from waste, water or wastewater resources. The process has been shown to work best with wastewater streams that present high N-NH4 concentrations, low buffering capacities and low total suspended solids. The removal of N-NH4 from rendering condensate, produced during heat treatment of waste animal tissue, was assessed in this research using a hydrophobic membrane contactor. This study investigates how the molecular composition of rendering condensate wastewater undergo changes in its chemistry in order to achieve suitability to be treated using hydrophobic membranes and form a suitable product. The main objective was to test the ammonia stripping technology using two types of hydrophobic membrane materials, polypropylene (PP) and polytetrafluoroethylene (PTFE) at pilot scale and carry out: (i) Process modification for NH3 molecule removal and (ii) product characterization from the process. The results demonstrate that PP membranes are not compatible with the condensate waste as it caused wetting. The PTFE membranes showed potential and had a longer lifetime than the PP membranes and removed up to 64% of NH3 molecules from the condensate waste. The product formed contained a 30% concentrated ammonium sulphate salt which has a potential application as a fertilizer. This is the first demonstration of hydrophobic membrane contactors for treatment of condensate wastewater.

Other Information

Published in: International Journal of Molecular Sciences
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/ijms21113914

Funding

European Regional Development Fund (IP2015).

ABP Food Group (IP2015).

Irelands European Structural and Investment (IP2015).

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Environment and Energy Research Institute - HBKU

Usage metrics

    Qatar Environment and Energy Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC