PFT: A Novel Time-Frequency Decomposition of BOLD fMRI Signals for Autism Spectrum Disorder Detection
Diagnosing Autism spectrum disorder (ASD) is a challenging task for clinicians due to the inconsistencies in existing medical tests. The Internet of things (IoT) has been used in several medical applications to realize advancements in the healthcare industry. Using machine learning in tandem IoT can enhance the monitoring and detection of ASD. To date, most ASD studies have relied primarily on the operational connectivity and structural metrics of fMRI data processing while neglecting the temporal dynamics components. Our research proposes Progressive Fourier Transform (PFT), a novel time-frequency decomposition, together with a Convolutional Neural Network (CNN), as a preferred alternative to available ASD detection systems. We use the Autism Brain Imaging Data Exchange dataset for model validation, demonstrating better results of the proposed PFT model compared to the existing models, including an increase in accuracy to 96.7%. These results show that the proposed technique is capable of analyzing rs-fMRI data from different brain diseases of the same type.
Other Information
Published in: Sustainability
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/su15054094
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
MDPIPublication Year
- 2023
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Hamad Bin Khalifa University
- College of Science and Engineering - HBKU