submitted on 2024-12-10, 10:26 and posted on 2024-12-10, 10:27authored byMohamed Qasim Al-Fahdawi, Faris A.J. Al-Doghachi, Qasim Khlaif Abdullah, Ruaa Tareq Hammad, Abdullah Rasedee, Wisam Nabeel Ibrahim, Hussah Abdullah Alshwyeh, Areej A Alosaimi, Sahar Khamees Aldosary, Eltayeb E.M. Eid, Rozita Rosli, Y.H. Taufiq-Yap, Nagi A. Al-Haj, Mothanna Sadiq Al-Qubaisi
<p>The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30–50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)−2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.</p><h2>Other Information</h2> <p> Published in: Biomedicine & Pharmacotherapy<br> License: <a href="http://creativecommons.org/licenses/by/4.0/" target="_blank">http://creativecommons.org/licenses/by/4.0/</a><br>See article on publisher's website: <a href="https://dx.doi.org/10.1016/j.biopha.2021.111483" target="_blank">https://dx.doi.org/10.1016/j.biopha.2021.111483</a></p>
Funding
Open Access funding provided by the Qatar National Library.