Manara - Qatar Research Repository
Browse
1/1
2 files

Optimum sintering method and temperature for cold compact Bismuth Telluride pellets for thermoelectric applications

journal contribution
submitted on 2023-10-31, 10:11 and posted on 2023-10-31, 11:22 authored by Farheen F. Jaldurgam, Zubair Ahmad, Farid Touati, Abdulla Al Ashraf, Abdul Shakoor, Jolly Bhadra, Noora J. Al-Thani, Dong Suk Han, Talal Altahtamouni

This work intends to investigate the optimum sintering method and temperature that can improve the efficiency of bismuth telluride cold compact pellets, for the thermoelectric applications. Different p-type and n-type bismuth telluride cold compact pellets were treated using three different sintering techniques and conditions: pressure less (conventional), microwave, and tube (using argon environment) at temperatures 250 °C, 300 °C, 350 °C, and 400 °C. The structural, microscopic, electron transport, thermal, and dielectric properties of the pristine and sintered samples were examined. Broadband dielectric spectroscopy was performed to extract a detailed picture of the dielectric properties of the samples. Even though each type of sintering had its own merits and demerits, the optimum conditions for enhanced electric and thermal features were found in microwave furnace followed by tube and conventional. Low thermal conductivity of 0.4 W/m/K was observed in the samples sintered at 250 °C while the increase in sintering temperature from 250 °C to 300 °C improved the crystallinity of the material. Moreover, the crystal structure of the bismuth telluride altered with the occurrence of higher oxidation leading to the formation of high bismuth telluride oxide phases at sintering temperatures above 300 °C, more dominantly in the n-type samples.

Other Information

Published in: Journal of Alloys and Compounds
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.jallcom.2021.160256

Funding

Open Access funding provided by the Qatar National Library

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License

Institution affiliated with

  • Qatar University
  • Qatar University Young Scientists Center - QU
  • Center for Advanced Materials - QU
  • College of Engineering - QU
  • College of Arts and Sciences - QU