Manara - Qatar Research Repository
Browse

Operational neural networks

Download (4.24 MB)
journal contribution
posted on 2022-11-22, 21:12 authored by Serkan Kiranyaz, Turker Ince, Alexandros Iosifidis, Moncef Gabbouj

Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function or the solution space that they attempt to approximate. This is mainly because of their homogenous configuration based solely on the linear neuron model. Therefore, while they learn very well those problems with a monotonous, relatively simple and linearly separable solution space, they may entirely fail to do so when the solution space is highly nonlinear and complex. Sharing the same linear neuron model with two additional constraints (local connections and weight sharing), this is also true for the conventional convolutional neural networks (CNNs) and it is, therefore, not surprising that in many challenging problems only the deep CNNs with a massive complexity and depth can achieve the required diversity and the learning performance. In order to address this drawback and also to accomplish a more generalized model over the convolutional neurons, this study proposes a novel network model, called operational neural networks (ONNs), which can be heterogeneous and encapsulate neurons with any set of operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. Finally, the training method to back-propagate the error through the operational layers of ONNs is formulated. Experimental results over highly challenging problems demonstrate the superior learning capabilities of ONNs even with few neurons and hidden layers.

Other Information

Published in: Neural Computing and Applications
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: http://dx.doi.org/10.1007/s00521-020-04780-3

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar University
  • College of Engineering - QU

Usage metrics

    Qatar University

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC