On the Role of Renewable Energy Policies and Electric Vehicle Deployment Incentives for a Greener Sector Coupling
Various incentives are introduced for the expansion of electric vehicle fleets and electricity generation from renewable energy resources. Although many researchers studied the effect of these policies on the related sector, there is no study investigating the indirect effect of renewable energy incentives on the deployment of electric vehicles or the indirect effect of electric vehicle adoption policies on the long-term integration of renewable energy resources. The main contribution of this paper is to analyze the impact of the specific incentives on both deployment of electric vehicles in the transportation system and investment in capacity generation in the electricity market. For this purpose, a new framework was designed to analyze the effect of policies on the electric vehicle deployment and development of DC charging stations based on the system dynamics approach. Then, this framework was combined with the existing dynamic models of the electricity market to study the interaction and behavior of both coupled systems from the policymakers’ perspective. The effect of policies implementation was interpreted in a mathematical framework and the Net Present Value method was used for assessing the investment in charging infrastructures. Simulation results of a case study in the United States and sensitivity analysis illustrate that increasing the wind capacity incentives accelerated the electrification of the transportation system and increasing the incentives for electrification of transportation system influences wind capacity positively. Moreover, the sensitivity of the electric vehicle adoption to gas price is more than the sensitivity of the wind capacity penetration to gas price.
Other Information
Published in: IEEE Access
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1109/access.2022.3176012
Funding
Open Access funding provided by the Qatar National Library.
History
Language
- English
Publisher
IEEEPublication Year
- 2022
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International License.Institution affiliated with
- Qatar University
- College of Engineering - QU