Manara - Qatar Research Repository
Browse
energies-12-03419.pdf (283.66 kB)

On Optimal Battery Sizing for Households Participating in Demand-Side Management Schemes

Download (283.66 kB)
journal contribution
submitted on 2024-05-27, 10:29 and posted on 2024-05-27, 10:29 authored by Matthias Pilz, Omar Ellabban, Luluwah Al-Fagih

The smart grid with its two-way communication and bi-directional power layers is a cornerstone in the combat against global warming. It allows for the large-scale adoption of distributed (individually-owned) renewable energy resources such as solar photovoltaic systems. Their intermittency poses a threat to the stability of the grid, which can be addressed by the introduction of energy storage systems. Determining the optimal capacity of a battery has been an active area of research in recent years. In this research, an in-depth analysis of the relation between optimal capacity and demand and generation patterns is performed for households taking part in a community-wide demand-side management scheme. The scheme is based on a non-cooperative dynamic game approach in which participants compete for the lowest electricity bill by scheduling their energy storage systems. The results are evaluated based on self-consumption, the peak-to-average ratio of the aggregated load and potential cost reductions. Furthermore, the difference between individually-owned batteries and a centralised community energy storage system serving the whole community is investigated.

Other Information

Published in: Energies
License: https://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.3390/en12183419

Funding

Open Access funding provided by the Qatar National Library.

History

Language

  • English

Publisher

MDPI

Publication Year

  • 2019

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Qatar Science & Technology Park
  • Iberdrola Innovation Middle East QSTP LLC
  • Hamad Bin Khalifa University
  • College of Science and Engineering - HBKU

Usage metrics

    College of Science and Engineering - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC