Manara - Qatar Research Repository
Browse
1/1
3 files

New constraints of terrestrial and oceanic global gross primary productions from the triple oxygen isotopic composition of atmospheric CO2 and O2

journal contribution
submitted on 2023-12-11, 06:32 and posted on 2023-12-11, 10:24 authored by Mao-Chang Liang, Amzad H. Laskar, Eugeni Barkan, Sally Newman, Mark H. Thiemens, Ravi Rangarajan

Representations of the changing global carbon cycle under climatic and environmental perturbations require highly detailed accounting of all atmosphere and biosphere exchange. These fluxes remain unsatisfactory, as a consequence of only having data with limited spatiotemporal coverage and precision, which restrict accurate assessments. Through the nature of intimate coupling of global carbon and oxygen cycles via O2 and CO2 and their unique triple oxygen isotope compositions in the biosphere and atmosphere, greater insight is available. We report analysis of their isotopic compositions with the widest geographical and temporal coverage (123 new measurements for CO2) and constrain, on an annual basis, the global CO2 recycling time (1.5 ± 0.2 year) and gross primary productivities of terrestrial (~ 170–200 PgC/year) and oceanic (~ 90–120 PgC/year) biospheres. Observed inter-annual variations in CO2 triple oxygen isotopic compositions were observed at a magnitude close to the largest contrast set by the terrestrial and oceanic biospheres. The seasonal cycles between the east and west Pacific Ocean were found to be drastically different. This intra-annual variability implies that the entire atmospheric CO2 turnover time is not much longer than the tropospheric mixing time (less than ~ 5 months), verifying the derived recycling time. The new measurements, analyses, and incorporation of other global data sets allow development of an independent approach, providing a strong constraint to biogeochemical models.

Other Information

Published in: Scientific Reports
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1038/s41598-023-29389-z

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2023

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • University of Doha for Science and Technology
  • College of Health Sciences - UDST

Usage metrics

    College of Health Sciences - UDST

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC